Deggendorf Institute of Technology, 94469 Deggendorf, Germany.
Sensors (Basel). 2024 Oct 12;24(20):6583. doi: 10.3390/s24206583.
In an aging society, the need for efficient emergency detection systems in smart homes is becoming increasingly important. For elderly people living alone, technical solutions for detecting emergencies are essential to receiving help quickly when needed. Numerous solutions already exist based on wearable or ambient sensors. However, existing methods for emergency detection typically assume that sensor data are error-free and contain no false positives, which cannot always be guaranteed in practice. Therefore, we present a novel method for detecting emergencies in private households that detects unusually long inactivity periods and can process erroneous or uncertain activity information. We introduce the , which provides a probabilistic weighting of inactivity periods based on the reliability of sensor measurements. By analyzing historical Inactivity Scores, anomalies that potentially represent an emergency can be identified. The proposed method is compared with four related approaches on seven different datasets. Our method surpasses existing approaches when considering the number of false positives and the mean time to detect emergencies. It achieves an average detection time of approximately 05:23:28 h with only 0.09 false alarms per day under noise-free conditions. Moreover, unlike related approaches, the proposed method remains effective with noisy data.
在老龄化社会中,智能家居中高效的紧急情况检测系统的需求变得越来越重要。对于独自生活的老年人来说,紧急情况检测的技术解决方案对于在需要时快速获得帮助至关重要。已经存在许多基于可穿戴或环境传感器的解决方案。然而,现有的紧急情况检测方法通常假设传感器数据是无错误的,并且不含误报,但在实际中这并不能总是得到保证。因此,我们提出了一种新的方法,用于检测私人住宅中的紧急情况,该方法可以检测异常长的不活动期,并可以处理错误或不确定的活动信息。我们引入了一种新的方法,该方法根据传感器测量的可靠性对不活动期进行概率加权。通过分析历史不活动分数,可以识别可能表示紧急情况的异常。将提出的方法与七种不同数据集上的四种相关方法进行了比较。在考虑误报数量和检测紧急情况的平均时间时,我们的方法优于现有方法。在无噪声条件下,它的平均检测时间约为 05:23:28 h,每天的误报率仅为 0.09。此外,与相关方法不同,该方法在存在噪声数据的情况下仍然有效。