Suppr超能文献

智能视觉透明性:使用可解释人工智能的高效眼部疾病预测模型。

Smart Vision Transparency: Efficient Ocular Disease Prediction Model Using Explainable Artificial Intelligence.

机构信息

Department of Computer Science, Prince Mohammad Bin Fahd University, Dhahran 34754, Saudi Arabia.

Department of Computer Science, Lahore Garrison University, Lahore 54000, Pakistan.

出版信息

Sensors (Basel). 2024 Oct 14;24(20):6618. doi: 10.3390/s24206618.

Abstract

The early prediction of ocular disease is certainly an obligatory concern in the domain of ophthalmic medicine. Although modern scientific discoveries have shown the potential to treat eye diseases by using artificial intelligence (AI) and machine learning, explainable AI remains a crucial challenge confronting this area of research. Although some traditional methods put in significant effort, they cannot accurately predict the proper ocular diseases. However, incorporating AI into diagnosing eye diseases in healthcare complicates the situation as the decision-making process of AI demonstrates complexity, which is a significant concern, especially in major sectors like ocular disease prediction. The lack of transparency in the AI models may hinder the confidence and trust of the doctors and the patients, as well as their perception of the AI and its abilities. Accordingly, explainable AI is significant in ensuring trust in the technology, enhancing clinical decision-making ability, and deploying ocular disease detection. This research proposed an efficient transfer learning model for eye disease prediction to transform smart vision potential in the healthcare sector and meet conventional approaches' challenges while integrating explainable artificial intelligence (XAI). The integration of XAI in the proposed model ensures the transparency of the decision-making process through the comprehensive provision of rationale. This proposed model provides promising results with 95.74% accuracy and explains the transformative potential of XAI in advancing ocular healthcare. This significant milestone underscores the effectiveness of the proposed model in accurately determining various types of ocular disease. It is clearly shown that the proposed model is performing better than the previously published methods.

摘要

眼部疾病的早期预测无疑是眼科医学领域的一个必要关注点。虽然现代科学发现通过人工智能(AI)和机器学习有可能治疗眼部疾病,但可解释性 AI 仍然是该研究领域面临的关键挑战。尽管一些传统方法投入了大量精力,但它们无法准确预测适当的眼部疾病。然而,将 AI 纳入医疗保健中的眼部疾病诊断会使情况变得复杂,因为 AI 的决策过程表现出复杂性,这是一个重大关注点,尤其是在眼部疾病预测等主要领域。AI 模型缺乏透明度可能会阻碍医生和患者的信心和信任,以及他们对 AI 及其能力的看法。因此,可解释性 AI 对于确保对技术的信任、提高临床决策能力以及部署眼部疾病检测至关重要。本研究提出了一种用于眼部疾病预测的高效迁移学习模型,以挖掘医疗保健领域的智能视觉潜力,并应对传统方法的挑战,同时整合可解释性人工智能(XAI)。通过全面提供推理,XAI 的集成确保了决策过程的透明度。该模型提供了有希望的结果,准确率为 95.74%,并解释了 XAI 在推进眼部医疗保健方面的变革性潜力。这一重要里程碑表明,该模型在准确确定各种类型的眼部疾病方面的有效性。显然,该模型的表现优于之前发表的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8abb/11510864/c2fc6517a595/sensors-24-06618-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验