Suppr超能文献

基于Transformer 的多样化视频特征融合的增强型婴儿运动分析在神经发育监测中的应用。

Enhanced Infant Movement Analysis Using Transformer-Based Fusion of Diverse Video Features for Neurodevelopmental Monitoring.

机构信息

School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK.

Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Sensors (Basel). 2024 Oct 14;24(20):6619. doi: 10.3390/s24206619.

Abstract

Neurodevelopment is a highly intricate process, and early detection of abnormalities is critical for optimizing outcomes through timely intervention. Accurate and cost-effective diagnostic methods for neurological disorders, particularly in infants, remain a significant challenge due to the heterogeneity of data and the variability in neurodevelopmental conditions. This study recruited twelve parent-infant pairs, with infants aged 3 to 12 months. Approximately 25 min of 2D video footage was captured, documenting natural play interactions between the infants and toys. We developed a novel, open-source method to classify and analyse infant movement patterns using deep learning techniques, specifically employing a transformer-based fusion model that integrates multiple video features within a unified deep neural network. This approach significantly outperforms traditional methods reliant on individual video features, achieving an accuracy of over 90%. Furthermore, a sensitivity analysis revealed that the pose estimation contributed far less to the model's output than the pre-trained transformer and convolutional neural network (CNN) components, providing key insights into the relative importance of different feature sets. By providing a more robust, accurate and low-cost analysis of movement patterns, our work aims to enhance the early detection and potential prediction of neurodevelopmental delays, whilst providing insight into the functioning of the transformer-based fusion models of diverse video features.

摘要

神经发育是一个高度复杂的过程,早期发现异常对于通过及时干预优化结果至关重要。由于数据的异质性和神经发育状况的可变性,用于神经障碍的准确且具有成本效益的诊断方法,特别是在婴儿中,仍然是一个重大挑战。本研究招募了 12 对母婴,婴儿年龄在 3 到 12 个月之间。大约拍摄了 25 分钟的 2D 视频片段,记录了婴儿与玩具之间自然玩耍的互动。我们开发了一种新颖的、开源的方法,使用深度学习技术对婴儿的运动模式进行分类和分析,特别是采用了基于转换器的融合模型,该模型将多个视频特征集成到一个统一的深度神经网络中。这种方法的性能明显优于依赖于单个视频特征的传统方法,准确率超过 90%。此外,敏感性分析表明,与预训练的转换器和卷积神经网络(CNN)组件相比,姿势估计对模型输出的贡献要小得多,这为不同特征集的相对重要性提供了关键见解。通过提供更强大、准确和低成本的运动模式分析,我们的工作旨在增强神经发育迟缓的早期检测和潜在预测能力,同时深入了解基于转换器的融合模型对各种视频特征的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8506/11511202/96e1891614d0/sensors-24-06619-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验