Suppr超能文献

一种利用多传感器漏磁信号融合的新型缺陷量化方法。

A Novel Defect Quantification Method Utilizing Multi-Sensor Magnetic Flux Leakage Signal Fusion.

作者信息

Liu Wenlong, Ren Lemei, Tian Guansan

机构信息

School of Thermal Engineering, Shandong Jianzhu University, Jinan 250100, China.

出版信息

Sensors (Basel). 2024 Oct 14;24(20):6623. doi: 10.3390/s24206623.

Abstract

In the assessment of pipeline integrity using magnetic flux leakage (MFL) detection, it is crucial to quantify defects accurately and efficiently using MFL signals. However, in complex detection environments, traditional defect inversion methods exhibit low quantification accuracy and efficiency due to the complexity of their algorithms or excessive reliance on a priori knowledge and expert experience. To address these issues, this study presents a novel defect quantification method based on multi-sensor signal fusion (MSSF). The method employs a multi-sensor probe to fuse the MFL signals under multiple lift-off values, enhancing the diversity of defect information. This enables defect-opening profile recognition using the characteristic approximation approach (CAA). Subsequently, the MSSF method is based on a 3D magnetic dipole model and integrates the structural features of multi-sensor probes to develop an algorithm. This algorithm iteratively determines the defect depth at multiple data acquisition points within the defect region to obtain the maximum defect depth. The feasibility of the MSSF quantification method is validated through finite element simulation and physical experiments. The results demonstrate that the proposed method achieves accurate defect quantification while enhancing efficiency, with the number of iterations for each defect depth calculation point consistently requiring fewer than 15 iterations. For rectangular metal loss, perforation, and conical defects, quantification errors are less than 10%, meeting practical inspection requirements.

摘要

在使用漏磁(MFL)检测评估管道完整性时,利用MFL信号准确高效地量化缺陷至关重要。然而,在复杂的检测环境中,传统的缺陷反演方法由于算法复杂或过度依赖先验知识和专家经验,其量化精度和效率较低。为了解决这些问题,本研究提出了一种基于多传感器信号融合(MSSF)的新型缺陷量化方法。该方法采用多传感器探头融合多个提离值下的MFL信号,增强了缺陷信息的多样性。这使得能够使用特征近似方法(CAA)识别缺陷开口轮廓。随后,MSSF方法基于三维磁偶极子模型,并整合多传感器探头的结构特征来开发一种算法。该算法在缺陷区域内的多个数据采集点迭代确定缺陷深度,以获得最大缺陷深度。通过有限元模拟和物理实验验证了MSSF量化方法的可行性。结果表明,所提出的方法在提高效率的同时实现了准确的缺陷量化,每个缺陷深度计算点的迭代次数始终少于15次。对于矩形金属损失、穿孔和锥形缺陷,量化误差小于10%,满足实际检测要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/602a/11511088/d6caae048441/sensors-24-06623-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验