Suppr超能文献

基于高效管理粒子群优化算法的漏磁信号缺陷轮廓估计

Defect profile estimation from magnetic flux leakage signal via efficient managing particle swarm optimization.

作者信息

Han Wenhua, Xu Jun, Wang Ping, Tian Guiyun

机构信息

College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China.

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Sensors (Basel). 2014 Jun 12;14(6):10361-80. doi: 10.3390/s140610361.

Abstract

In this paper, efficient managing particle swarm optimization (EMPSO) for high dimension problem is proposed to estimate defect profile from magnetic flux leakage (MFL) signal. In the proposed EMPSO, in order to strengthen exchange of information among particles, particle pair model was built. For more efficient searching when facing different landscapes of problems, velocity updating scheme including three velocity updating models was also proposed. In addition, for more chances to search optimum solution out, automatic particle selection for re-initialization was implemented. The optimization results of six benchmark functions show EMPSO performs well when optimizing 100-D problems. The defect simulation results demonstrate that the inversing technique based on EMPSO outperforms the one based on self-learning particle swarm optimizer (SLPSO), and the estimated profiles are still close to the desired profiles with the presence of low noise in MFL signal. The results estimated from real MFL signal by EMPSO-based inversing technique also indicate that the algorithm is capable of providing an accurate solution of the defect profile with real signal. Both the simulation results and experiment results show the computing time of the EMPSO-based inversing technique is reduced by 20%-30% than that of the SLPSO-based inversing technique.

摘要

本文提出了一种用于高维问题的高效管理粒子群优化算法(EMPSO),以从漏磁(MFL)信号中估计缺陷轮廓。在所提出的EMPSO中,为了加强粒子间的信息交换,构建了粒子对模型。为了在面对不同的问题态势时更高效地搜索,还提出了包括三种速度更新模型的速度更新方案。此外,为了有更多机会找到最优解,实现了自动粒子选择以进行重新初始化。六个基准函数的优化结果表明,EMPSO在优化100维问题时表现良好。缺陷模拟结果表明,基于EMPSO的反演技术优于基于自学习粒子群优化器(SLPSO)的反演技术,并且在MFL信号存在低噪声的情况下,估计的轮廓仍接近期望的轮廓。基于EMPSO的反演技术从实际MFL信号估计的结果也表明,该算法能够为实际信号提供准确的缺陷轮廓解。模拟结果和实验结果均表明,基于EMPSO的反演技术的计算时间比基于SLPSO的反演技术减少了20%-30%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c876/4118418/ce5803e554fa/sensors-14-10361f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验