Fang Bin, Bai Hua, Zhang Jiaxin, Wang Limin, Li PanPan, Ge Yihao, Yang Hui, Wang Hui, Peng Bo, Hu Wenbo, Ma Huili, Chen Xi, Fu Li, Li Lin
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Biomaterials. 2025 Apr;315:122914. doi: 10.1016/j.biomaterials.2024.122914. Epub 2024 Oct 22.
Tumor ablation Preclinical organelle-targeted phototherapies have effectively achieved tumor photoablation for regenerative biomedical applications in cancer therapies. However, engineering effective phototherapy drugs with precise tumor-localization targeting and organelle direction remains challenging. Herein, we report a albumins constrainting mitochondrial-targeted photosensitizer nanoparticles (PSs@BSAs) for tumor-specific photodynamic therapy. X-ray crystallography elucidates the two-stage assembly mechanism of PSs@BSAs. Femtosecond transient absorption spectroscopy and quantum mechanical calculations reveal the implications of conformational dynamics at the excited state. PSs@BSAs can efficiently disable mitochondrial activity, and further disrupt tumor angiogenesis based on the photodynamic effect. This triggers a metabolic and oxidative stress crisis to facilitate photoablation of solid tumor and antitumor metastasis. The study fully elucidates the interdisciplinary issues of chemistry, physics, and biological interfaces, thereby opening new horizons to inspire the engineering of organelle-targeted tumor-specific photosensitizers for biomedical applications.
肿瘤消融 临床前的细胞器靶向光疗法已有效地实现了用于癌症治疗中再生生物医学应用的肿瘤光消融。然而,设计具有精确肿瘤定位靶向和细胞器导向的有效光疗药物仍然具有挑战性。在此,我们报道了一种用于肿瘤特异性光动力治疗的白蛋白约束线粒体靶向光敏剂纳米颗粒(PSs@BSAs)。X射线晶体学阐明了PSs@BSAs的两阶段组装机制。飞秒瞬态吸收光谱和量子力学计算揭示了激发态构象动力学的影响。PSs@BSAs可以有效抑制线粒体活性,并基于光动力效应进一步破坏肿瘤血管生成。这引发了代谢和氧化应激危机,以促进实体瘤的光消融和抗肿瘤转移。该研究充分阐明了化学、物理和生物界面的跨学科问题,从而开辟了新的视野,以激发用于生物医学应用的细胞器靶向肿瘤特异性光敏剂的工程设计。