Departamento de Genética, Evolução, Microbiologia e Imunologia, Unicamp, Campinas, SP, Brazil.
Mol Genet Genomics. 2024 Oct 26;299(1):103. doi: 10.1007/s00438-024-02196-5.
Ethanol stress in Saccharomyces cerevisiae is a well-studied phenomenon, but pinpointing specific genes or polymorphisms governing ethanol tolerance remains a subject of ongoing debate. Naturally found in sugar-rich environments, this yeast has evolved to withstand high ethanol concentrations, primarily produced during fermentation in the presence of suitable oxygen or sugar levels. Originally a defense mechanism against competing microorganisms, yeast-produced ethanol is now a cornerstone of brewing and bioethanol industries, where customized yeasts require high ethanol resistance for economic viability. However, yeast strains exhibit varying degrees of ethanol tolerance, ranging from 8 to 20%, making the genetic architecture of this trait complex and challenging to decipher. In this study, we introduce a novel QTL mapping pipeline to investigate the genetic markers underlying ethanol tolerance in an industrial bioethanol S. cerevisiae strain. By calculating missense mutation frequency in an allele located in a prominent QTL region within a population of 1011 S. cerevisiae strains, we uncovered rare occurrences in gene IRA2. Following molecular validation, we confirmed the significant contribution of this gene to ethanol tolerance, particularly in concentrations exceeding 12% of ethanol. IRA2 pivotal role in stress tolerance due to its participation in the Ras-cAMP pathway was further supported by its involvement in other tolerance responses, including thermotolerance, low pH tolerance, and resistance to acetic acid. Understanding the genetic basis of ethanol stress in S. cerevisiae holds promise for developing robust yeast strains tailored for industrial applications.
乙醇胁迫是酿酒酵母中一个研究较为透彻的现象,但确定哪些特定基因或多态性与乙醇耐受性相关,仍存在争议。这种酵母天然存在于富含糖分的环境中,已经进化到能够耐受高浓度的乙醇,这些乙醇主要是在适当的氧气或糖浓度存在下发酵产生的。最初,酵母产生的乙醇是作为一种抵御竞争微生物的防御机制,但现在它已经成为酿造和生物乙醇工业的基石,在这些行业中,需要高度耐乙醇的定制酵母以实现经济可行性。然而,酵母菌株的乙醇耐受性存在差异,范围在 8%到 20%之间,因此该特性的遗传结构较为复杂,难以解读。在这项研究中,我们引入了一种新的 QTL 映射管道,以研究工业生物乙醇酿酒酵母菌株中乙醇耐受性的遗传标记。通过计算位于一个突出的 QTL 区域内的一个等位基因在 1011 个酿酒酵母菌株群体中的错义突变频率,我们在 IRA2 基因中发现了罕见的情况。经过分子验证,我们证实了该基因对乙醇耐受性的显著贡献,特别是在乙醇浓度超过 12%的情况下。IRA2 通过参与 Ras-cAMP 途径在应激耐受中起着关键作用,这进一步得到了它参与其他耐受反应的支持,包括耐热性、耐低 pH 值和抗乙酸能力。了解酿酒酵母中乙醇胁迫的遗传基础有望开发出针对工业应用的稳健酵母菌株。