Suppr超能文献

酵母中最大乙醇积累能力和耐受高乙醇水平细胞增殖的比较多基因分析。

Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

机构信息

Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium.

出版信息

PLoS Genet. 2013 Jun;9(6):e1003548. doi: 10.1371/journal.pgen.1003548. Epub 2013 Jun 6.

Abstract

The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.

摘要

酿酒酵母在缺乏细胞增殖的情况下能够通过发酵积累≥17%(体积比)的乙醇。其具有这种独特能力的遗传基础尚不清楚。迄今为止,所有的研究都集中在酵母细胞增殖对高乙醇水平的耐受上。对 68 株酵母菌株的最大乙醇积累能力和细胞增殖乙醇耐受能力进行比较,发现两者相关性较差,但细胞增殖乙醇耐受能力的提高明显增加了具有更高最大乙醇积累能力的可能性。我们应用混合分离群体全基因组序列分析,使用来自一个酿造酵母 CBS1585 单倍体衍生物和实验室菌株 BY 的杂交后代的分离群体,来鉴定这两个复杂性状的多基因基础。从总共 301 个分离群体中,分别对 22 个在小规模发酵中积累≥17%乙醇的优势分离群体和 32 个在 18%乙醇存在下生长的优势分离群体进行了混合和测序。将 SNP 变体频率与染色体位置作图显示,这两个性状分别有 11 个和 8 个数量性状位点(QTL),表明这两个性状的遗传基础部分不同。精细定位和正反交半合子分析确定了 ADE1、URA3 和 KIN3,编码参与 DNA 损伤修复的蛋白激酶,为最大乙醇积累能力的特定致病基因。在这种遗传背景下,这些基因以及之前鉴定的 MKT1 基因与细胞增殖对高乙醇水平的耐受无关。优势 KIN3 等位基因包含两个 SNP,在迄今为止测序的所有酵母菌株中都不存在。这项工作首次揭示了酵母中最大乙醇积累能力的遗传基础,并首次揭示了 DNA 损伤修复在酵母乙醇耐受中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9481/3675000/af8b46482aa8/pgen.1003548.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验