文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用高品质因子等离子体多模折射率光学生物传感器评估严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)。

Evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a high figure-of-merit plasmonic multimode refractive index optical sensor.

机构信息

Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.

出版信息

Sci Rep. 2024 Oct 26;14(1):25499. doi: 10.1038/s41598-024-77336-3.


DOI:10.1038/s41598-024-77336-3
PMID:39462024
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11513005/
Abstract

In recent years, following the outbreak of the COVID-19 pandemic, there has been a significant increase in cases of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and related deaths worldwide. Despite the pandemic nearing its end due to the introduction of mass-produced vaccines against SARS-CoV-2, early detection and diagnosis of the virus remain crucial in preventing disease progression. This article explores the rapid identification of SARS-CoV-2 by implementing a multimode plasmonic refractive index (MMRI) optical sensor, developed based on the split ring resonator (SRR) design. The Finite Difference Time Domain (FDTD) numerical solution method simulates the sensor. The studied sensor demonstrates three resonance modes within the reflection spectrum ranging from 800 nm to 1400 nm. Its material composition and dimensional parameters are optimized to enhance the sensor's performance. The research indicates that all three resonance modes exhibit strong performance with high sensitivity and figures of merit. Notably, the first mode achieves an exceptional sensitivity of 557 nm/RIU, while the third mode exhibits a commendable sensitivity of 453 nm/RIU and a Figure of Merit (FOM) of 45 RIU. These findings suggest that the developed MMRI optical sensor holds significant potential for the early and accurate detection of SARS-CoV-2, contributing to improved disease management and control efforts.

摘要

近年来,随着 COVID-19 大流行的爆发,SARS-CoV-2(严重急性呼吸系统综合症冠状病毒 2)在全球范围内的病例和相关死亡人数显著增加。尽管由于大规模生产的 SARS-CoV-2 疫苗的引入,大流行即将结束,但早期检测和诊断该病毒对于防止疾病进展仍然至关重要。本文探讨了通过实施基于分裂环谐振器 (SRR) 设计的多模等离子体折射率 (MMRI) 光学传感器来快速识别 SARS-CoV-2。有限差分时域 (FDTD) 数值解法模拟了传感器。所研究的传感器在 800nm 至 1400nm 的反射光谱范围内显示出三种共振模式。其材料组成和尺寸参数经过优化,以增强传感器的性能。研究表明,所有三种共振模式都具有高灵敏度和品质因数的优异性能。值得注意的是,第一种模式实现了 557nm/RIU 的异常高灵敏度,而第三种模式表现出 453nm/RIU 的令人瞩目的灵敏度和 45 RIU 的品质因数 (FOM)。这些发现表明,所开发的 MMRI 光学传感器在 SARS-CoV-2 的早期和准确检测方面具有重要潜力,有助于改善疾病管理和控制工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/8b76736e74d6/41598_2024_77336_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/ccc81c47a738/41598_2024_77336_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0f77e92d5970/41598_2024_77336_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0dff5e46da4f/41598_2024_77336_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/196f4c03b18c/41598_2024_77336_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/08e5839500ca/41598_2024_77336_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/f7e4e0f5bb2e/41598_2024_77336_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0ba749bdbeee/41598_2024_77336_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/5b510df6bfd1/41598_2024_77336_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/61c04f90befa/41598_2024_77336_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/971268ee2d44/41598_2024_77336_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/60d423428d21/41598_2024_77336_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/8b76736e74d6/41598_2024_77336_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/ccc81c47a738/41598_2024_77336_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0f77e92d5970/41598_2024_77336_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0dff5e46da4f/41598_2024_77336_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/196f4c03b18c/41598_2024_77336_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/08e5839500ca/41598_2024_77336_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/f7e4e0f5bb2e/41598_2024_77336_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/0ba749bdbeee/41598_2024_77336_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/5b510df6bfd1/41598_2024_77336_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/61c04f90befa/41598_2024_77336_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/971268ee2d44/41598_2024_77336_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/60d423428d21/41598_2024_77336_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d616/11513005/8b76736e74d6/41598_2024_77336_Fig12_HTML.jpg

相似文献

[1]
Evaluation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a high figure-of-merit plasmonic multimode refractive index optical sensor.

Sci Rep. 2024-10-26

[2]
Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus.

Sensors (Basel). 2021-5-17

[3]
Plasmonic photonic biosensor: in situ detection and quantification of SARS-CoV-2 particles.

Opt Express. 2022-10-24

[4]
Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.

ACS Nano. 2013-11-22

[5]
Side-polished few-mode fiber based surface plasmon resonance biosensor.

Opt Express. 2019-4-15

[6]
Open-channel-based dual-core D-shaped photonic crystal fiber plasmonic biosensor.

Appl Opt. 2020-10-1

[7]
Asymmetric core-guided polarization-dependent plasmonic biosensor.

Appl Opt. 2020-9-10

[8]
Plasmonic external cavity laser refractometric sensor.

Opt Express. 2014-8-25

[9]
Multispectral plasmonic biosensors based on a Penta-supercell metamaterial for detection of prostate-specific antigen: Ultrasensitive in LC resonance mode.

Biosens Bioelectron. 2022-12-1

[10]
Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity.

Biosensors (Basel). 2022-5-6

引用本文的文献

[1]
Electrostatic enhanced terahertz metamaterial biosensing via gold nanoparticles integrated with biomolecules.

Sci Rep. 2025-3-12

本文引用的文献

[1]
Metastructure Engineering with Ruddlesden-Popper 2D Perovskites: Stability, Flexibility, and Quality Factor Trade-Offs.

ACS Omega. 2024-5-29

[2]
Multi-channel prismatic localized surface plasmon resonance biosensor for real-time competitive assay multiple COVID-19 characteristic miRNAs.

Talanta. 2024-8-1

[3]
P-FAB: A Fiber-Optic Biosensor Device for Rapid Detection of COVID-19.

Trans Indian Natl Acad Eng. 2020

[4]
Design and analysis of a flexible Ruddlesden-Popper 2D perovskite metastructure based on symmetry-protected THz-bound states in the continuum.

Sci Rep. 2023-12-16

[5]
Quasi-BIC based all-dielectric metasurfaces for ultra-sensitive refractive index and temperature sensing.

Sci Rep. 2023-11-23

[6]
Detection of Virus SARS-CoV-2 Using a Surface Plasmon Resonance Device Based on BiFeO-Graphene Layers.

Plasmonics. 2023-5-10

[7]
Numerical Study of Titanium Dioxide and MXene Nanomaterial-Based Surface Plasmon Resonance Biosensor for Virus SARS-CoV-2 Detection.

Plasmonics. 2023-5-11

[8]
Portable Surface Plasmon Resonance Detector for COVID-19 Infection.

Sensors (Basel). 2023-4-13

[9]
A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2.

Opt Quantum Electron. 2023

[10]
SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review.

IEEE Sens J. 2022-6-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索