Suppr超能文献

基于 sEEG 传播网络的耐药性癫痫虚拟切除评估。

Virtual resection evaluation based on sEEG propagation network for drug-resistant epilepsy.

机构信息

College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.

School of Software, Taiyuan University of Technology, Taiyuan, China.

出版信息

Sci Rep. 2024 Oct 26;14(1):25542. doi: 10.1038/s41598-024-77216-w.

Abstract

Drug-resistant epilepsy with frequent seizures are considered to undergo surgery to become seizure-free, but seizure-free rates have not dramatically improved, partly due to imprecise intervention locations. To address this clinical need, we construct effective connectivity to reveal epilepsy brain dynamics. Based on the propagation path captured by the high order effective connectivity, calculate the control centrality evaluation scheme of the excised area. We used three datasets: simulation dataset, clinical dataset, and public dataset. The epileptogenic propagation network was quantified by calculating high-order effective connection to obtain accurate propagation path, based on this, combined with the outdegree index for virtual resection. By removing electrodes and recalculating control centrality, we quantify each electrode or region's control centrality to evaluate the virtual resection scheme. Three datasets obtained consistent results. We track the accurate propagation path and find the obvious inflection points occurring during the excision process. The minimum intervention targets were obtained by comparing different schemes without recurrence. The clinical data with multiple seizures found that after resection, the brain reaches a stable state and is less likely to continue spreading. By quantitative analysis of control centrality to evaluate the possible excision scheme, finally we obtain the best intervention area for epilepsy, which assist in developing surgical plans.

摘要

耐药性癫痫且发作频繁的患者被认为需要进行手术以达到无癫痫发作,但无癫痫发作率并未显著提高,部分原因是干预位置不够精确。为了解决这一临床需求,我们构建了有效的连通性以揭示癫痫大脑的动力学。基于高阶有效连通性捕捉到的传播路径,计算切除区域的控制中心性评估方案。我们使用了三个数据集:模拟数据集、临床数据集和公共数据集。通过计算高阶有效连接来量化致痫性传播网络,以获得准确的传播路径,在此基础上,结合出度指数进行虚拟切除。通过移除电极并重新计算控制中心性,我们量化每个电极或区域的控制中心性,以评估虚拟切除方案。三个数据集均得到了一致的结果。我们跟踪准确的传播路径,并在切除过程中发现明显的转折点。通过比较不同方案,在没有复发的情况下获得了最小的干预目标。对于具有多次发作的临床数据,发现切除后大脑达到稳定状态,不太可能继续扩散。通过对控制中心性进行定量分析来评估可能的切除方案,最终我们获得了治疗癫痫的最佳干预区域,这有助于制定手术计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd38/11513035/35e95be0d704/41598_2024_77216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验