Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
University of Chinese Academy of Sciences, Beijing, China.
Commun Biol. 2024 Oct 26;7(1):1399. doi: 10.1038/s42003-024-07103-7.
To achieve high efficiency in microbial cell factories, it is crucial to redesign central carbon fluxes to ensure an adequate supply of precursors for producing high-value compounds. In this study, we employed a multi-omics approach to rearrange the central carbon flux of the pyruvate dehydrogenase (PDH) bypass, thereby enhancing the supply of intermediate precursors, specifically acetyl-CoA. This enhancement aimed to improve the biosynthesis of acetyl-CoA-derived compounds, such as terpenoids and fatty acid-derived molecules, in Saccharomyces cerevisiae. Through transcriptomic and lipidomic analyses, we identified ALD4 as a key regulatory gene influencing lipid metabolism. Genetic validation demonstrated that overexpression of the mitochondrial acetaldehyde dehydrogenase (ALDH) gene ALD4 resulted in a 20.1% increase in lipid production. This study provides theoretical support for optimising the performance of S. cerevisiae as a "cell factory" for the production of commercial compounds.
为了在微生物细胞工厂中实现高效率,重新设计中央碳通量以确保为生产高价值化合物提供足够的前体是至关重要的。在这项研究中,我们采用了一种多组学方法来重新排列丙酮酸脱氢酶(PDH)旁路的中央碳通量,从而增加中间前体的供应,特别是乙酰辅酶 A。这种增强旨在改善酵母中乙酰辅酶 A 衍生化合物的生物合成,如萜类化合物和脂肪酸衍生分子。通过转录组学和脂质组学分析,我们确定 ALD4 是影响脂质代谢的关键调节基因。遗传验证表明,线粒体乙醛脱氢酶(ALDH)基因 ALD4 的过表达导致脂质产量增加了 20.1%。这项研究为优化酿酒酵母作为生产商业化合物的“细胞工厂”的性能提供了理论支持。