Suppr超能文献

酿酒酵母中用于增强乙酰辅酶A和聚酮化合物生物合成的工程化辅因子及转运机制

Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.

作者信息

Cardenas Javier, Da Silva Nancy A

机构信息

Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.

Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.

出版信息

Metab Eng. 2016 Jul;36:80-89. doi: 10.1016/j.ymben.2016.02.009. Epub 2016 Mar 9.

Abstract

Synthesis of polyketides at high titer and yield is important for producing pharmaceuticals and biorenewable chemical precursors. In this work, we engineered cofactor and transport pathways in Saccharomyces cerevisiae to increase acetyl-CoA, an important polyketide building block. The highly regulated yeast pyruvate dehydrogenase bypass pathway was supplemented by overexpressing a modified Escherichia coli pyruvate dehydrogenase complex (PDHm) that accepts NADP(+) for acetyl-CoA production. After 24h of cultivation, a 3.7-fold increase in NADPH/NADP(+) ratio was observed relative to the base strain, and a 2.2-fold increase relative to introduction of the native E. coli PDH. Both E. coli pathways increased acetyl-CoA levels approximately 2-fold relative to the yeast base strain. Combining PDHm with a ZWF1 deletion to block the major yeast NADPH biosynthesis pathway resulted in a 12-fold NADPH boost and a 2.2-fold increase in acetyl-CoA. At 48h, only this coupled approach showed increased acetyl-CoA levels, 3.0-fold higher than that of the base strain. The impact on polyketide synthesis was evaluated in a S. cerevisiae strain expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for the production of the polyketide triacetic acid lactone (TAL). Titers of TAL relative to the base strain improved only 30% with the native E. coli PDH, but 3.0-fold with PDHm and 4.4-fold with PDHm in the Δzwf1 strain. Carbon was further routed toward TAL production by reducing mitochondrial transport of pyruvate and acetyl-CoA; deletions in genes POR2, MPC2, PDA1, or YAT2 each increased titer 2-3-fold over the base strain (up to 0.8g/L), and in combination to 1.4g/L. Combining the two approaches (NADPH-generating acetyl-CoA pathway plus reduced metabolite flux into the mitochondria) resulted in a final TAL titer of 1.6g/L, a 6.4-fold increase over the non-engineered yeast strain, and 35% of theoretical yield (0.16g/g glucose), the highest reported to date. These biological driving forces present new avenues for improving high-yield production of acetyl-CoA derived compounds.

摘要

高滴度和高产量合成聚酮化合物对于生产药物和生物可再生化学前体至关重要。在这项工作中,我们对酿酒酵母中的辅因子和转运途径进行了工程改造,以增加乙酰辅酶A(一种重要的聚酮化合物构建模块)的含量。通过过表达一种接受NADP(+)生成乙酰辅酶A的修饰大肠杆菌丙酮酸脱氢酶复合物(PDHm),对高度调控的酵母丙酮酸脱氢酶旁路途径进行了补充。培养24小时后,相对于基础菌株,观察到NADPH/NADP(+)比值增加了3.7倍,相对于引入天然大肠杆菌PDH增加了2.2倍。与酵母基础菌株相比,两种大肠杆菌途径均使乙酰辅酶A水平提高了约2倍。将PDHm与ZWF1缺失相结合以阻断酵母主要的NADPH生物合成途径,导致NADPH增加了12倍,乙酰辅酶A增加了2.2倍。在48小时时,只有这种联合方法显示乙酰辅酶A水平增加,比基础菌株高3.0倍。在表达用于生产聚酮化合物三乙酸内酯(TAL)的非洲菊2-吡喃合酶(2-PS)的酿酒酵母菌株中评估了对聚酮化合物合成的影响。相对于基础菌株,天然大肠杆菌PDH使TAL滴度仅提高了30%,但PDHm使其提高了3.0倍,在Δzwf1菌株中PDHm使其提高了4.4倍。通过减少丙酮酸和乙酰辅酶A的线粒体转运,碳进一步流向TAL的生产;POR2、MPC2、PDA1或YAT2基因的缺失相对于基础菌株均使滴度提高了2-3倍(最高达到0.8g/L),组合使用时达到1.4g/L。将两种方法(生成NADPH的乙酰辅酶A途径加上减少代谢物流入线粒体)相结合,最终TAL滴度达到1.6g/L,比未工程改造的酵母菌株提高了6.4倍,达到理论产量(0.16g/g葡萄糖)的35%,这是迄今为止报道的最高水平。这些生物学驱动力为提高乙酰辅酶A衍生化合物的高产生产提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验