Suppr超能文献

用于糖尿病视网膜病变分类的小规模跨层融合网络

[Small-scale cross-layer fusion network for classification of diabetic retinopathy].

作者信息

Guo Ying, Li Shaojie

机构信息

School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Oct 25;41(5):861-868. doi: 10.7507/1001-5515.202403016.

Abstract

Deep learning-based automatic classification of diabetic retinopathy (DR) helps to enhance the accuracy and efficiency of auxiliary diagnosis. This paper presents an improved residual network model for classifying DR into five different severity levels. First, the convolution in the first layer of the residual network was replaced with three smaller convolutions to reduce the computational load of the network. Second, to address the issue of inaccurate classification due to minimal differences between different severity levels, a mixed attention mechanism was introduced to make the model focus more on the crucial features of the lesions. Finally, to better extract the morphological features of the lesions in DR images, cross-layer fusion convolutions were used instead of the conventional residual structure. To validate the effectiveness of the improved model, it was applied to the Kaggle Blindness Detection competition dataset APTOS2019. The experimental results demonstrated that the proposed model achieved a classification accuracy of 97.75% and a Kappa value of 0.971 7 for the five DR severity levels. Compared to some existing models, this approach shows significant advantages in classification accuracy and performance.

摘要

基于深度学习的糖尿病视网膜病变(DR)自动分类有助于提高辅助诊断的准确性和效率。本文提出了一种改进的残差网络模型,用于将DR分为五个不同的严重程度级别。首先,将残差网络第一层的卷积替换为三个较小的卷积,以减少网络的计算量。其次,为了解决不同严重程度级别之间差异极小导致分类不准确的问题,引入了混合注意力机制,使模型更关注病变的关键特征。最后,为了更好地提取DR图像中病变的形态特征,使用跨层融合卷积代替传统的残差结构。为了验证改进模型的有效性,将其应用于Kaggle盲症检测竞赛数据集APTOS2019。实验结果表明,所提出的模型在五个DR严重程度级别上实现了97.75%的分类准确率和0.971 7的Kappa值。与一些现有模型相比,该方法在分类准确率和性能方面显示出显著优势。

相似文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验