Suppr超能文献

一种用于自动分类黄斑变性 OCT 图像的新方法。

A novel approach for automatic classification of macular degeneration OCT images.

机构信息

School of Informatics, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.

School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.

出版信息

Sci Rep. 2024 Aug 20;14(1):19285. doi: 10.1038/s41598-024-70175-2.

Abstract

Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment. Classification of Macular Degeneration OCT Images is a widely used method for assessing retinal lesions. However, there are two main challenges in OCT image classification: incomplete image feature extraction and lack of prominence in important positional features. To address these challenges, we proposed a deep learning neural network model called MSA-Net, which incorporates our proposed multi-scale architecture and spatial attention mechanism. Our multi-scale architecture is based on depthwise separable convolution, which ensures comprehensive feature extraction from multiple scales while minimizing the growth of model parameters. The spatial attention mechanism is aim to highlight the important positional features in the images, which emphasizes the representation of macular region features in OCT images. We test MSA-NET on the NEH dataset and the UCSD dataset, performing three-class (CNV, DURSEN, and NORMAL) and four-class (CNV, DURSEN, DME, and NORMAL) classification tasks. On the NEH dataset, the accuracy, sensitivity, and specificity are 98.1%, 97.9%, and 98.0%, respectively. After fine-tuning on the UCSD dataset, the accuracy, sensitivity, and specificity are 96.7%, 96.7%, and 98.9%, respectively. Experimental results demonstrate the excellent classification performance and generalization ability of our model compared to previous models and recent well-known OCT classification models, establishing it as a highly competitive intelligence classification approach in the field of macular degeneration.

摘要

年龄相关性黄斑变性 (AMD) 和糖尿病性黄斑水肿 (DME) 是全球范围内导致失明的重要原因。由于人口老龄化,这些疾病的患病率稳步上升。因此,早期诊断和预防对于有效治疗至关重要。黄斑变性 OCT 图像分类是评估视网膜病变的常用方法。然而,OCT 图像分类存在两个主要挑战:图像特征提取不完整和重要位置特征不突出。为了解决这些挑战,我们提出了一种称为 MSA-Net 的深度学习神经网络模型,该模型结合了我们提出的多尺度架构和空间注意力机制。我们的多尺度架构基于深度可分离卷积,可确保从多个尺度全面提取特征,同时最小化模型参数的增长。空间注意力机制旨在突出图像中的重要位置特征,强调 OCT 图像中黄斑区域特征的表示。我们在 NEH 数据集和 UCSD 数据集上对 MSA-Net 进行了测试,执行了三类 (CNV、DURSEN 和 NORMAL) 和四类 (CNV、DURSEN、DME 和 NORMAL) 分类任务。在 NEH 数据集上,准确率、灵敏度和特异性分别为 98.1%、97.9%和 98.0%。在 UCSD 数据集上进行微调后,准确率、灵敏度和特异性分别为 96.7%、96.7%和 98.9%。实验结果表明,与以前的模型和最近的著名 OCT 分类模型相比,我们的模型具有出色的分类性能和泛化能力,确立了其在黄斑变性领域作为一种极具竞争力的智能分类方法的地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ba/11335908/e8a8ab0cc5d8/41598_2024_70175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验