Phillips Emma, van Enk Sizèd, Kildgaard Sara, Schlue Silja, Göttmann Mona, Jennings Victoria, Bethke Frederic, Müller Gabriele, Herold-Mende Christel, Pastor-Flores Daniel, Schneider Martin, Helm Dominic, Ostenfeld Larsen Thomas, Goidts Violaine
Junior Research Group "Brain Tumor Translational Targets", German Cancer Research Center (DKFZ), Heidelberg, Germany.
Department of Biotechnology and Biomedicine, Section for Microbial and Chemical Ecology, Natural Product Discovery, Technical University of Denmark, Copenhagen, Denmark.
Mol Oncol. 2025 Mar;19(3):785-807. doi: 10.1002/1878-0261.13756. Epub 2024 Oct 27.
Glioblastoma is a highly aggressive brain tumor for which there is no cure. The dire prognosis of this disease is largely attributable to a high level of heterogeneity, including the presence of a subpopulation of tumor-initiating glioblastoma stem-like cells (GSCs), which are refractory to chemo- and radiotherapy. Here, in an unbiased marine-derived fungal extract screen, together with bioguided dereplication based on high-resolution mass spectrometry, we identified malformin C to preferentially induce cell death in patient-derived GSCs and explore the potential of this cyclic peptide as a therapeutic agent for glioblastoma. Malformin C significantly reduced tumor growth in an in vivo xenograft model of glioblastoma. Using transcriptomics and chemoproteomics, we found that malformin C binds to many proteins, leading to their aggregation, and rapidly induces the unfolded protein response, including autophagy, in GSCs. Crucially, chemical inhibition of translation using cycloheximide rescued malformin C-induced cell death in GSCs, demonstrating that the proteotoxic effect of the compound is necessary for its cytotoxicity. At the same time, malformin C appears to accumulate in lysosomes, disrupting autophagic flux, and driving cells to death. Supporting this, malformin C synergizes with chloroquine, an inhibitor of autophagy. Strikingly, we observed that autophagic flux is differentially regulated in GSCs compared with normal astrocytes. The sensitivity of GSCs to malformin C highlights the relevance of proteostasis and autophagy as a therapeutic vulnerability in glioblastoma.
胶质母细胞瘤是一种极具侵袭性的脑肿瘤,目前尚无治愈方法。这种疾病的预后极差,很大程度上归因于其高度的异质性,包括存在一群肿瘤起始胶质母细胞瘤干细胞样细胞(GSCs),它们对化疗和放疗具有抗性。在此,通过一项无偏向性的海洋来源真菌提取物筛选,并结合基于高分辨率质谱的生物导向去重复分析,我们鉴定出马尔弗菌素C能优先诱导患者来源的GSCs发生细胞死亡,并探索了这种环肽作为胶质母细胞瘤治疗药物的潜力。马尔弗菌素C在胶质母细胞瘤的体内异种移植模型中显著降低了肿瘤生长。利用转录组学和化学蛋白质组学,我们发现马尔弗菌素C能与许多蛋白质结合,导致它们聚集,并在GSCs中迅速诱导未折叠蛋白反应,包括自噬。至关重要的是,使用环己酰亚胺化学抑制翻译可挽救马尔弗菌素C诱导的GSCs细胞死亡,这表明该化合物的蛋白毒性作用对其细胞毒性是必需的。同时,马尔弗菌素C似乎在溶酶体中积累,破坏自噬通量,并促使细胞死亡。支持这一观点的是,马尔弗菌素C与自噬抑制剂氯喹具有协同作用。令人惊讶的是,我们观察到与正常星形胶质细胞相比,GSCs中的自噬通量受到不同的调节。GSCs对马尔弗菌素C的敏感性突出了蛋白质稳态和自噬作为胶质母细胞瘤治疗靶点的相关性。