O'Connor Cian, Mullally Rena E, McComish Sarah F, O'Sullivan Julia, Woods Ian, Schoen Ingmar, Garre Massimiliano, Caldwell Maeve A, Dervan Adrian, O'Brien Fergal J
Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.
Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
J Anat. 2025 Apr;246(4):585-601. doi: 10.1111/joa.14163. Epub 2024 Oct 28.
The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications. This study aimed to provide an in-depth analysis of how different commonly used extracellular matrix proteins- laminin-1, Fn, collagen IV, and collagen I-affect the morphology and growth of trophic induced pluripotent stem cell (iPSC)-derived astrocyte progenitors and mouse motor neuron-like cells. Following a 7-day culture period, morphological assessments revealed that laminin-1, fibronectin, and collagen-IV, but not collagen I, promoted increased process extension and a stellate morphology in astrocytes, with collagen-IV yielding the greatest increases. Subsequent analysis of neurons grown on the different extracellular matrix proteins revealed a similar pattern with laminin-1, fibronectin, and collagen-IV supporting robust neurite outgrowth. fibronectin promoted the greatest increase in neurite extension, while collagen-I did not enhance neurite growth compared to poly-L-lysine controls. Super-resolution microscopy highlighted extracellular matrix-specific nanoscale changes in cytoskeletal organization, with distinct patterns of actin filament distribution where the three basement membrane-associated proteins (laminin-1, fibronectin, and collagen-IV) promoted the extension of fine cellular processes. Overall, this study demonstrates the potent effect of laminin-1, fibronectin and collagen-IV to promote both iPSC-derived astrocyte progenitor and neuronal growth, yielding detailed insights into the effect of extracellular matrix proteins on neural cell morphology at both the whole cell and nanoscale levels. The ability of laminin-1, collagen-IV and fibronectin to elicit strong growth-promoting effects highlight their suitability as optimal extracellular matrix proteins to incorporate into neurotrophic biomaterial scaffolds for the delivery of cell cargoes for neural repair.
细胞外基质在发育中和成年中枢神经系统中调节细胞行为方面发挥着关键作用,影响神经细胞的形态、功能和生长。神经元和星形胶质细胞分别在神经信号传导和支持方面发挥着至关重要的作用,并对周围基质环境的信号作出反应。然而,更好地了解特定的单个细胞外基质蛋白对神经元和星形胶质细胞的影响,对于推进用于神经修复应用的基于基质的支架的开发至关重要。本研究旨在深入分析不同常用的细胞外基质蛋白——层粘连蛋白-1、纤连蛋白、IV型胶原和I型胶原——如何影响营养诱导多能干细胞(iPSC)来源的星形胶质细胞祖细胞和小鼠运动神经元样细胞的形态和生长。经过7天的培养期后,形态学评估显示,层粘连蛋白-1、纤连蛋白和IV型胶原,但不包括I型胶原,促进了星形胶质细胞中突起延伸的增加和星形形态的形成,其中IV型胶原产生的增加最为显著。随后对在不同细胞外基质蛋白上生长的神经元的分析揭示了类似的模式,层粘连蛋白-1、纤连蛋白和IV型胶原支持强劲的神经突生长。纤连蛋白促进神经突延伸的增加最为显著,而与聚-L-赖氨酸对照相比,I型胶原并未增强神经突生长。超分辨率显微镜突出了细胞外基质特异性的细胞骨架组织纳米级变化,其中三种与基底膜相关的蛋白(层粘连蛋白-1、纤连蛋白和IV型胶原)促进了精细细胞突起的延伸,肌动蛋白丝分布呈现出不同的模式。总体而言,本研究证明了层粘连蛋白-1、纤连蛋白和IV型胶原促进iPSC来源的星形胶质细胞祖细胞和神经元生长的强大作用,在全细胞和纳米级水平上对细胞外基质蛋白对神经细胞形态的影响产生了详细的见解。层粘连蛋白-1、IV型胶原和纤连蛋白引发强大的生长促进作用的能力突出了它们作为最佳细胞外基质蛋白的适用性,可纳入神经营养生物材料支架中,用于递送用于神经修复的细胞载体。