Intelligence Community Postdoctoral Research Fellowship Program, University of Tennessee, Knoxville, TN, USA.
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 16;379(1916):20220461. doi: 10.1098/rstb.2022.0461. Epub 2024 Oct 28.
In long-lived organisms, experience can accumulate with age, such that older individuals may act as repositories of ecological and social knowledge. Such knowledge is often beneficial and can spread via social transmission, leading to the expectation that ageing individuals will remain socially well-integrated. However, social ageing involves multiple processes that modulate the relationship between age and social connectivity in complex ways. We developed a generative model to explore how social ageing may drive changes in social network position and shape older individuals' capacity to transmit knowledge to others. We further employ novel hypernetwork analyses that capture higher-order interactions (i.e. involving ≥ 3 participants) to reveal potential relationships between age and sociality that conventional dyadic networks may overlook. We find that older individuals in our simulations effectively facilitate transmission across a range of scenarios, especially when transmission resembles a complex contagion or when social selectivity (i.e. prioritization of key relationships) rapidly emerges with age. These patterns result from the formation of tight-knit sets of older associates that co-occur in multiple groups, thereby reinforcing one another's capacity to transmit knowledge. Our findings suggest key avenues for future empirical work and illustrate the use of hypernetworks in advancing the study of social behaviour.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
在长寿生物中,经验可以随着年龄的增长而积累,因此,年长的个体可能是生态和社会知识的宝库。这种知识通常是有益的,可以通过社会传播传播,导致人们期望衰老的个体仍然保持良好的社会融合。然而,社会老龄化涉及多种过程,这些过程以复杂的方式调节年龄和社会联系之间的关系。我们开发了一个生成模型,以探索社会老龄化如何驱动社会网络地位的变化,并塑造老年人向他人传授知识的能力。我们进一步采用新的超网络分析来捕捉更高阶的相互作用(即涉及≥3 个参与者),以揭示传统二元网络可能忽略的年龄与社会性之间的潜在关系。我们发现,我们模拟中的老年人在各种情况下都能有效地促进信息的传递,尤其是当传递类似于复杂的传染时,或者当社会选择性(即关键关系的优先级)随着年龄的增长而迅速出现时。这些模式是由紧密联系的老年伙伴群体形成的,这些群体在多个群体中同时出现,从而增强了彼此传递知识的能力。我们的研究结果为未来的实证工作提供了重要途径,并说明了超网络在推进社会行为研究中的应用。本文是“利用自然群体了解年龄和社会”讨论会议的一部分。