Suppr超能文献

一种用于测量三量子比特系统中全局和真实纠缠的几何公式。

A geometric formulation to measure global and genuine entanglement in three-qubit systems.

作者信息

Luna-Hernández Salvio, Enríquez Marco, Rosas-Ortiz Oscar

机构信息

Physics Department, Cinvestav, AP 14-740, 07000, México City, Mexico.

Tecnologico de Monterrey, School of Engineering and Sciences, 01389, Santa Fe, Mexico.

出版信息

Sci Rep. 2024 Oct 28;14(1):25684. doi: 10.1038/s41598-024-76566-9.

Abstract

We introduce a purely geometric formulation for two different measures addressed to quantify the entanglement between different parts of a tripartite qubit system. Our approach considers the entanglement-polytope defined by the smallest eigenvalues of the reduced density matrices of the qubit-components. The measures identify global and genuine entanglement, and are respectively associated with the projection and rejection of a given point of the polytope on the corresponding biseparable segments. Solving the so called 'inverse problem', we also discuss a way to force the system to behave in a particular form, which opens the possibility of controlling and manipulating entanglement for practical purposes.

摘要

我们引入了一种纯几何公式,用于两种不同的度量,旨在量化三方量子比特系统不同部分之间的纠缠。我们的方法考虑了由量子比特分量的约化密度矩阵的最小本征值定义的纠缠多面体。这些度量识别全局纠缠和真正纠缠,并且分别与多面体上给定点在相应双可分线段上的投影和拒斥相关联。通过解决所谓的“逆问题”,我们还讨论了一种迫使系统以特定形式表现的方法,这为出于实际目的控制和操纵纠缠开辟了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be95/11514295/35d7e0766bd5/41598_2024_76566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验