Suppr超能文献

年轻乳腺癌患者的预后列线图:一项基于监测、流行病学和最终结果(SEER)数据库及分子分型乳腺癌国际协作组(METABRIC)数据库的回顾性研究

Prognostic nomograms for young breast cancer: A retrospective study based on the SEER and METABRIC databases.

作者信息

Li Yongxin, Tao Xinlong, Ye Yinyin, Tang Yuyao, Xu Zhengbo, Tian Yaming, Liu Zhen, Zhao Jiuda

机构信息

Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University Xining Qinghai China.

Qinghai University Xining Qinghai China.

出版信息

Cancer Innov. 2024 Oct 25;3(6):e152. doi: 10.1002/cai2.152. eCollection 2024 Dec.

Abstract

BACKGROUND

Young breast cancer (YBC) is a subset of breast cancer that is often more aggressive, but less is known about its prognosis. In this study, we aimed to generate nomograms to predict the overall survival (OS) and breast cancer-specific survival (BCSS) of YBC patients.

METHODS

Data of women diagnosed with YBC between 2010 and 2020 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. The patients were randomly allocated into a training cohort ( = 15,227) and internal validation cohort ( = 6,526) at a 7:3 ratio. With the Cox regression models, significant prognostic factors were identified and used to construct 3-, 5-, and 10-year nomograms of OS and BCSS. Data from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database were used as an external validation cohort ( = 90).

RESULTS

We constructed nomograms incorporating 10 prognostic factors for OS and BCSS. These nomograms demonstrated strong predictive accuracy for OS and BCSS in the training cohort, with C-indexes of 0.806 and 0.813, respectively. The calibration curves verified that the nomograms have good prediction accuracy. Decision curve analysis demonstrated their practical clinical value for predicting YBC patient survival rates. Additionally, we provided dynamic nomograms to improve the operability of the results. The risk stratification ability assessment also showed that the OS and BCSS rates of the low-risk group were significantly better than those of the high-risk group.

CONCLUSIONS

Here, we generated and validated more comprehensive and accurate OS and BCSS nomograms than models previously developed for YBC. These nomograms can help clinicians evaluate patient prognosis and make clinical decisions.

摘要

背景

青年乳腺癌(YBC)是乳腺癌的一个亚组,通常侵袭性更强,但对其预后的了解较少。在本研究中,我们旨在生成列线图以预测YBC患者的总生存期(OS)和乳腺癌特异性生存期(BCSS)。

方法

从监测、流行病学和最终结果(SEER)数据库中获取2010年至2020年间诊断为YBC的女性的数据。患者按7:3的比例随机分为训练队列(n = 15227)和内部验证队列(n = 6526)。通过Cox回归模型,确定显著的预后因素并用于构建OS和BCSS的3年、5年和10年列线图。来自国际乳腺癌分子分类联盟(METABRIC)数据库的数据用作外部验证队列(n = 90)。

结果

我们构建了包含10个OS和BCSS预后因素的列线图。这些列线图在训练队列中对OS和BCSS显示出很强的预测准确性,C指数分别为0.806和0.813。校准曲线验证了列线图具有良好的预测准确性。决策曲线分析证明了它们在预测YBC患者生存率方面的实际临床价值。此外,我们提供了动态列线图以提高结果的可操作性。风险分层能力评估还表明,低风险组的OS和BCSS率明显优于高风险组。

结论

在此,我们生成并验证了比先前为YBC开发的模型更全面、准确的OS和BCSS列线图。这些列线图可帮助临床医生评估患者预后并做出临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/330f/11503687/5975c9d8175e/CAI2-3-e152-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验