Suppr超能文献

基于小样本随访数据的食管癌患者免疫治疗后生存预测

Prediction of Survival in Patients With Esophageal Cancer After Immunotherapy Based on Small-Size Follow-Up Data.

作者信息

Su Yuhan, Huang Chaofeng, Yang Chen, Lin Qin, Chen Zhong

机构信息

School of Electronic Science and EngineeringXiamen University Xiamen 361005 China.

Shenzhen Research Institute of Xiamen University Shenzhen 518057 China.

出版信息

IEEE Open J Eng Med Biol. 2024 Sep 2;5:769-782. doi: 10.1109/OJEMB.2024.3452983. eCollection 2024.

Abstract

Esophageal cancer (EC) poses a significant health concern, particularly among the elderly, warranting effective treatment strategies. While immunotherapy holds promise in activating the immune response against tumors, its specific impact and associated reactions in EC patients remain uncertain. Precise prognosis prediction becomes crucial for guiding appropriate interventions. This study, based on data from the First Affiliated Hospital of Xiamen University (January 2017 to May 2021), focuses on 113 EC patients undergoing immunotherapy. The primary objectives are to elucidate the effectiveness of immunotherapy in EC treatment and to introduce a stacking ensemble learning method for predicting the survival of EC patients who have undergone immunotherapy, in the context of small sample sizes, addressing the imperative of supporting clinical decision-making for healthcare professionals. Our method incorporates five sub-learners and one meta-learner. Leveraging optimal features from the training dataset, this approach achieved compelling accuracy (89.13%) and AUC (88.83%) in predicting three-year survival status, surpassing conventional techniques. The model proves efficient in guiding clinical decisions, especially in scenarios with small-size follow-up data.

摘要

食管癌(EC)对健康构成重大威胁,在老年人中尤为如此,因此需要有效的治疗策略。虽然免疫疗法有望激活针对肿瘤的免疫反应,但其在EC患者中的具体影响和相关反应仍不确定。精确的预后预测对于指导适当的干预措施至关重要。本研究基于厦门大学附属第一医院(2017年1月至2021年5月)的数据,聚焦于113例接受免疫治疗的EC患者。主要目标是阐明免疫疗法在EC治疗中的有效性,并引入一种堆叠集成学习方法,在小样本量的情况下预测接受免疫治疗的EC患者的生存情况,以满足医疗专业人员支持临床决策的迫切需求。我们的方法包括五个子学习器和一个元学习器。利用训练数据集的最优特征,该方法在预测三年生存状态时取得了令人信服的准确率(89.13%)和AUC(88.83%),超过了传统技术。该模型被证明在指导临床决策方面是有效的,尤其是在随访数据量小的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ec/11505867/c8306eb4b25b/su1-3452983.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验