Suppr超能文献

基于免疫基因对的特征在食管癌预后及免疫治疗预测中的研究进展

Development of immune gene pair-based signature predictive of prognosis and immunotherapy in esophageal cancer.

作者信息

Cao Kui, Ma Tianjiao, Ling Xiaodong, Liu Mingdong, Jiang Xiangyu, Ma Keru, Zhu Jinhong, Ma Jianqun

机构信息

Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China.

Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

Ann Transl Med. 2021 Oct;9(20):1591. doi: 10.21037/atm-21-5217.

Abstract

BACKGROUND

Esophageal cancer (EC) is one of the deadliest solid malignancies, mainly consisting of esophageal squamous cell carcinoma (ESCC) and adenocarcinoma (EAC). Robust biomarkers that can improve patient risk stratification are needed to optimize cancer management. We sought to establish potent prognostic signatures with immune-related gene (IRG) pairs for ESCC and EAC.

METHODS

We obtained differentially expressed IRGs by intersecting the Immunology Database and Analysis Portal (ImmPort) with the transcriptome data set of The Cancer Genome Atlas (TCGA)-ESCC and EAC cohorts. A novel rank-based pairwise comparison algorithm was applied to select effective IRG pairs (IRGPs), followed by constructing a prognostic IRGP signature via the least absolute shrinkage and selection operator (LASSO) regression model. We assessed the predictive power of the IRGP signatures on prognosis, tumor-infiltrating immune cells, and immune checkpoint inhibitor (ICI) efficacy in EC. Kaplan-Meier survival analysis and receiver operating characteristic curves (ROC) were used to evaluate the clinical significance of IRGPs. Univariate and multivariate Cox regression analyses were performed to investigate the association of overall survival (OS) with IRGPs and clinical characteristics.

RESULTS

We built a 19-IRGP signature for ESCC (n=75) and a 17-IRGP signature for EAC (n=78), with an area under the ROC curve (AUC) of 0.931 and 0.803, respectively. IRGP signature-derived risk scores stratified patients into low- and high-risk groups with significantly different OS in ESCC and EAC (P<0.001). Nomogram and decision curve analysis were used to evaluate the clinical relevance of the prognostic signatures, achieving a C-index of 0.973 in ESCC and 0.880 in EAC. The risk scores were associated with immune and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores and the composition of immune cells in the tumor microenvironment. The association between risk score and human leukocyte antigens (HLAs), mismatch repair (MMR) genes, and immune checkpoint molecules demonstrated its predictive value for ICI response. Differential immune characteristics and predictive value of the risk score were observed in EAC.

CONCLUSIONS

The established immune signatures showed great promise in predicting prognosis, tumor immunogenicity, and immunotherapy response in ESCC and EAC.

摘要

背景

食管癌(EC)是最致命的实体恶性肿瘤之一,主要由食管鳞状细胞癌(ESCC)和腺癌(EAC)组成。需要强大的生物标志物来改善患者风险分层,以优化癌症管理。我们试图为ESCC和EAC建立具有免疫相关基因(IRG)对的有效预后特征。

方法

我们通过将免疫学数据库和分析门户(ImmPort)与癌症基因组图谱(TCGA)-ESCC和EAC队列的转录组数据集相交,获得差异表达的IRG。应用一种新的基于秩的成对比较算法来选择有效的IRG对(IRGP),然后通过最小绝对收缩和选择算子(LASSO)回归模型构建预后IRGP特征。我们评估了IRGP特征对EC预后、肿瘤浸润免疫细胞和免疫检查点抑制剂(ICI)疗效的预测能力。采用Kaplan-Meier生存分析和受试者工作特征曲线(ROC)评估IRGP的临床意义。进行单变量和多变量Cox回归分析,以研究总生存期(OS)与IRGP和临床特征之间的关联。

结果

我们为ESCC(n = 75)构建了一个包含19个IRGP的特征,为EAC(n = 78)构建了一个包含17个IRGP的特征,ROC曲线下面积(AUC)分别为0.931和0.803。IRGP特征衍生的风险评分将ESCC和EAC患者分为低风险和高风险组,两组的OS有显著差异(P < 0.001)。使用列线图和决策曲线分析评估预后特征的临床相关性,ESCC的C指数为0.973,EAC的C指数为0.880。风险评分与免疫和ESTIMATE(使用表达数据估计恶性肿瘤组织中的基质和免疫细胞)评分以及肿瘤微环境中免疫细胞的组成相关。风险评分与人类白细胞抗原(HLA)、错配修复(MMR)基因和免疫检查点分子之间的关联证明了其对ICI反应的预测价值。在EAC中观察到风险评分的差异免疫特征和预测价值。

结论

所建立的免疫特征在预测ESCC和EAC的预后、肿瘤免疫原性和免疫治疗反应方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11c6/8576717/da1959d234fb/atm-09-20-1591-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验