Suppr超能文献

从感知质量角度对基于深度学习的低剂量计算机断层扫描去噪进行的系统综述。

A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective.

作者信息

Kim Wonjin, Jeon Sun-Young, Byun Gyuri, Yoo Hongki, Choi Jang-Hwan

机构信息

Department of Mechanical Engineering, Korean Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Korea.

AI Analysis Team, Dotter Inc., 225 Gasan Digital 1-ro, Geumchoen-gu, Seoul, 08501 Korea.

出版信息

Biomed Eng Lett. 2024 Aug 30;14(6):1153-1173. doi: 10.1007/s13534-024-00419-7. eCollection 2024 Nov.

Abstract

Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.

摘要

低剂量计算机断层扫描(LDCT)在减少辐射暴露方面至关重要,但常常受到严重图像噪声的影响,这可能会损害诊断准确性。虽然深度学习方法增强了LDCT去噪能力,但对PSNR和SSIM等客观指标的过度依赖导致图像过度平滑,缺乏关键细节。本文探索专门为提高LDCT图像感知质量而定制的先进深度学习方法,重点是生成临床实践中首选的诊断质量图像。我们回顾并比较了当前的方法,包括感知损失函数和生成对抗网络,解决了当前基准的重大局限性以及感知质量评估的主观性。通过系统分析,本研究强调了开发平衡感知质量和诊断质量方法的迫切需求,为该领域未来的研究提出了新方向。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验