Suppr超能文献

使用像素级非局部自相似性先验和非局部均值的低剂量计算机断层扫描图像去噪,用于医疗信息学。

Low-dose computed tomography image denoising using pixel level non-local self-similarity prior with non-local means for healthcare informatics.

作者信息

Lepcha Dawa Chyophel, Goyal Bhawna, Dogra Ayush, Vaghela Krunal, Singh Ashish, Kumar K S Ravi, Bavirisetti Durga Prasad

机构信息

Department of ECE, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.

Faculty of Engineering, Sohar University, Sohar, Oman.

出版信息

Sci Rep. 2025 Jul 11;15(1):25095. doi: 10.1038/s41598-025-10139-2.

Abstract

Low-dose computed tomography (LDCT) has gained considerable attention for its ability to minimize patients' exposure to radiation thereby reducing the associated cancer risks. However, this reduction in radiation dose often results in degraded image quality due to the presence of noise and artifacts. To address this challenge, the present study proposes an LDCT image denoising method that leverages a pixel-level nonlocal self-similarity (NSS) prior in combination with a nonlocal means algorithm. The NSS prior identifies similar pixels within non-local regions, which proves more feasible and effective than patch-based similarity in enhancing denoising performance. By utilizing this pixel-level prior, the method accurately estimates noise levels and subsequently applies a non-local Haar transform to execute the denoising process. Furthermore, the study incorporates an enhanced version of a recently proposed nonlocal means algorithm. This revised approach uses discrete neighbourhood filtering properties to enable efficient, vectorized, and parallel computation on modern shared-memory platforms thereby reducing computational complexity. Experimental evaluations on publicly available benchmark dataset NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge demonstrate that the proposed method effectively suppresses noise and artifacts while preserving critical image details. Both visual and quantitative comparisons confirm that this approach outperforms several state-of-the-art techniques in terms of image quality and denoising efficiency.

摘要

低剂量计算机断层扫描(LDCT)因其能够将患者的辐射暴露降至最低,从而降低相关癌症风险而备受关注。然而,由于噪声和伪影的存在,辐射剂量的这种降低往往会导致图像质量下降。为应对这一挑战,本研究提出了一种LDCT图像去噪方法,该方法利用像素级非局部自相似性(NSS)先验结合非局部均值算法。NSS先验可识别非局部区域内的相似像素,这在提高去噪性能方面比基于块的相似性更可行、更有效。通过利用这种像素级先验,该方法准确估计噪声水平,随后应用非局部哈尔变换执行去噪过程。此外,该研究纳入了最近提出的非局部均值算法的增强版本。这种改进方法利用离散邻域滤波特性,在现代共享内存平台上实现高效、向量化和并行计算,从而降低计算复杂度。对公开可用的基准数据集NIH - AAPM - 梅奥诊所低剂量CT大挑战的实验评估表明,该方法在保留关键图像细节的同时,有效抑制了噪声和伪影。视觉和定量比较均证实,该方法在图像质量和去噪效率方面优于几种现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d22/12254505/373a25b1b7fd/41598_2025_10139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验