Lee Young-Geun, Hong Seonghwan, Pan Bonian, Wu Xinsheng, Dickey Elizabeth C, Whitacre Jay F
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh ,Pennsylvania15213, United States of America.
Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States of America.
ACS Appl Mater Interfaces. 2024 Nov 6;16(44):60340-60347. doi: 10.1021/acsami.4c13891. Epub 2024 Oct 28.
Garnet-type LiLaZrTaO (LLZTO) is regarded as a highly competitive next-generation solid-state electrolyte for all-solid-state lithium batteries owing to reliable safety, a wide electrochemical operation window of 0-6 V versus Li/Li, and a superior stability against Li metal. Nevertheless, insufficient interface contacts caused by pores, along with Li dendrite growth at these voids and grain boundary regions, have hindered their commercial application. Herein, we suggest a method to produce high-quality LLZTO using LiAlO (LAO) as a chemical additive that leads to an improved microstructure with larger grain size (∼25 μm), a high relative density (∼96%), lower porosity (∼3.7%), and continuous secondary phases in grain boundary regions. This improved structure results in (i) improved Li-ion conductivity and enhanced interfacial resistance between Li metal and LLZTO by a denser structure with fewer pores and (ii) suppression of Li dendrite penetration in the electrolyte by secondary phases in grain boundary regions.
石榴石型LiLaZrTaO(LLZTO)由于具有可靠的安全性、相对于Li/Li为0-6V的宽电化学操作窗口以及对锂金属的优异稳定性,被认为是全固态锂电池极具竞争力的下一代固态电解质。然而,由孔隙导致的界面接触不足,以及在这些空隙和晶界区域的锂枝晶生长,阻碍了它们的商业应用。在此,我们提出一种使用LiAlO(LAO)作为化学添加剂来制备高质量LLZTO的方法,该方法能产生具有更大晶粒尺寸(约25μm)、高相对密度(约96%)、低孔隙率(约3.7%)以及晶界区域连续二次相的改善微观结构。这种改善的结构导致:(i)通过具有更少孔隙的致密结构提高锂离子电导率并增强锂金属与LLZTO之间的界面电阻;(ii)通过晶界区域的二次相抑制锂枝晶在电解质中的穿透。