Suppr超能文献

基于心音图与超声心动图特征综合列线图模型用于射血分数保留心力衰竭的诊断。

A Comprehensive Nomogram Integrating Phonocardiogram and Echocardiogram Features for the Diagnosis of Heart Failure With Preserved Ejection Fraction.

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.

Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.

出版信息

Clin Cardiol. 2024 Nov;47(11):e70022. doi: 10.1002/clc.70022.

Abstract

BACKGROUND

Heart failure with preserved ejection fraction (HFpEF) is associated with high hospitalization and mortality rates, representing a significant healthcare burden. This study aims to utilize various information including echocardiogram and phonocardiogram to construct and validate a nomogram, assisting in clinical decision-making.

METHODS

This study analyzed 204 patients (68 HFpEF and 136 non-HFpEF) from the First Affiliated Hospital of Chongqing Medical University. A total of 49 features were integrated and used, including phonocardiogram, echocardiogram features, and clinical parameters. The least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal matching factors, and a stepwise logistic regression was employed to determine independent risk factors and develop a nomogram. Model performance was evaluated by the area under receiver operating characteristic (ROC) curve (AUC), calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC).

RESULTS

The nomogram was constructed using five significant indicators, including NT-proBNP (OR = 4.689, p = 0.015), E/e' (OR = 1.219, p = 0.032), LAVI (OR = 1.088, p < 0.01), D/S (OR = 0.014, p < 0.01), and QM1 (OR = 1.058, p < 0.01), and showed a better AUC of 0.945 (95% CI = 0.908-0.982) in the training set and 0.933 (95% CI = 0.873-0.992) in the testing set compared to conventional nomogram without phonocardiogram features. The calibration curve and Hosmer-Lemeshow test demonstrated no statistical significance in the training and testing sets (p = 0.814 and p = 0.736), indicating the nomogram was well-calibrated. The DCA and CIC results confirmed favorable clinical usefulness.

CONCLUSION

The nomogram, integrating phonocardiogram and echocardiogram features, enhances HFpEF diagnostic efficiency, offering a valuable tool for clinical decision-making.

摘要

背景

射血分数保留型心力衰竭(HFpEF)与高住院率和死亡率相关,给医疗保健带来了巨大负担。本研究旨在利用包括超声心动图和心音图在内的各种信息构建并验证列线图,以辅助临床决策。

方法

本研究分析了来自重庆医科大学第一附属医院的 204 名患者(68 名 HFpEF 和 136 名非 HFpEF)。共整合使用了 49 项特征,包括心音图、超声心动图特征和临床参数。采用最小绝对值收缩和选择算子(LASSO)回归选择最佳匹配因素,采用逐步逻辑回归确定独立危险因素并建立列线图。通过受试者工作特征(ROC)曲线下面积(AUC)、校准曲线、决策曲线分析(DCA)和临床影响曲线(CIC)评估模型性能。

结果

该列线图使用五个显著指标构建,包括 NT-proBNP(OR=4.689,p=0.015)、E/e'(OR=1.219,p=0.032)、LAVI(OR=1.088,p<0.01)、D/S(OR=0.014,p<0.01)和 QM1(OR=1.058,p<0.01),在训练集中 AUC 为 0.945(95%CI=0.908-0.982),在测试集中 AUC 为 0.933(95%CI=0.873-0.992),优于不包含心音图特征的传统列线图。校准曲线和 Hosmer-Lemeshow 检验表明,在训练集和测试集均无统计学意义(p=0.814 和 p=0.736),提示该列线图具有良好的校准度。DCA 和 CIC 结果证实了其具有良好的临床实用性。

结论

该列线图整合了心音图和超声心动图特征,提高了 HFpEF 的诊断效率,为临床决策提供了有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3431/11514106/239f0938919d/CLC-47-e70022-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验