Suppr超能文献

使用机器学习和定量磁共振成像对精神分裂症和抑郁症的哺乳期神经发育多聚肌苷酸-聚胞苷酸大鼠模型中的脑异常进行表征。

Characterization of Brain Abnormalities in Lactational Neurodevelopmental Poly I:C Rat Model of Schizophrenia and Depression Using Machine-Learning and Quantitative MRI.

作者信息

Haker Rona, Helft Coral, Natali Shamir Emilya, Shahar Moni, Solomon Hadas, Omer Noam, Blumenfeld-Katzir Tamar, Zlotzover Sharon, Piontkewitz Yael, Weiner Ina, Ben-Eliezer Noam

机构信息

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

J Magn Reson Imaging. 2025 May;61(5):2281-2291. doi: 10.1002/jmri.29634. Epub 2024 Oct 28.

Abstract

BACKGROUND

A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring.

PURPOSE

To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools.

STUDY TYPE

Prospective.

ANIMAL MODEL

Twenty Poly I:C rats and 20 healthy control rats, age 130 postnatal day.

FIELD STRENGTH/SEQUENCE: 7 T. Multiflip-angle FLASH protocol for T mapping; multi-echo spin-echo T-mapping protocol; echo planar imaging protocol for diffusion tensor imaging.

ASSESSMENT

Nursing dams were injected with the viral mimic Poly I:C or saline (control group). In adulthood, quantitative maps of T, T, proton density, and five diffusion metrics were generated for the offsprings. Seven regions of interest (ROIs) were segmented, followed by extracting 10 quantitative features for each ROI.

STATISTICAL TESTS

Random forest machine learning (ML) tool was employed to identify MRI markers of disease and classify Poly I:C rats from healthy controls based on quantitative features.

RESULTS

Poly I:C rats were identified from controls with an accuracy of 82.5 ± 25.9% for females and 85.0 ± 24.0% for males. Poly I:C females exhibited differences mainly in diffusion-derived parameters in the thalamus and the medial prefrontal cortex (MPFC), while males displayed changes primarily in diffusion-derived parameters in the corpus callosum and MPFC.

DATA CONCLUSION

qMRI shows potential for identifying sex-specific brain abnormalities in the Poly I:C model of neurodevelopmental disorders.

LEVEL OF EVIDENCE

NA TECHNICAL EFFICACY: Stage 2.

摘要

背景

最近的一种神经发育大鼠模型,利用哺乳期暴露于聚肌苷酸-聚胞苷酸(Poly I:C),导致雄性后代出现类似精神分裂症症状的行为表型模拟,雌性后代出现类似抑郁症症状。

目的

使用定量磁共振成像(qMRI)工具确定哺乳期Poly I:C后代神经元异常的机制。

研究类型

前瞻性研究。

动物模型

20只Poly I:C大鼠和20只健康对照大鼠,出生后130天。

场强/序列:7T。用于T值映射的多翻转角FLASH协议;多回波自旋回波T值映射协议;用于扩散张量成像的回波平面成像协议。

评估

给哺乳母鼠注射病毒模拟物Poly I:C或生理盐水(对照组)。成年后,为后代生成T、T、质子密度和五个扩散指标的定量图谱。分割七个感兴趣区域(ROI),然后为每个ROI提取10个定量特征。

统计检验

采用随机森林机器学习(ML)工具来识别疾病的MRI标记物,并根据定量特征将Poly I:C大鼠与健康对照进行分类。

结果

从对照组中识别出Poly I:C大鼠,雌性的准确率为82.5±25.9%,雄性为85.0±24.0%。Poly I:C雌性主要在丘脑和内侧前额叶皮质(MPFC)的扩散衍生参数上表现出差异,而雄性主要在胼胝体和MPFC的扩散衍生参数上表现出变化。

数据结论

qMRI显示出在神经发育障碍的Poly I:C模型中识别性别特异性脑异常的潜力。

证据水平

NA 技术效能:2级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba6/11987781/1fa425de745e/JMRI-61-2281-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验