Department of Biomedical Engineering, Tel Aviv University, Israel.
Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Israel.
NMR Biomed. 2021 Aug;34(8):e4537. doi: 10.1002/nbm.4537. Epub 2021 May 16.
MRI's transverse relaxation time (T ) is sensitive to tissues' composition and pathological state. While variations in T values can be used as clinical biomarkers, it is challenging to quantify this parameter in vivo due to the complexity of the MRI signal model, differences in protocol implementations, and hardware imperfections. Herein, we provide a detailed analysis of the echo modulation curve (EMC) platform, offering accurate and reproducible mapping of T values, from 2D multi-slice multi-echo spin-echo (MESE) protocols. Computer simulations of the full Bloch equations are used to generate an advanced signal model, which accounts for stimulated echoes and transmit field (B ) inhomogeneities. In addition to quantifying T values, the EMC platform also provides proton density (PD) maps, and fat-water fraction maps. The algorithm's accuracy, reproducibility, and insensitivity to T values are validated on a phantom constructed by the National Institute of Standards and Technology and on in vivo human brains. EMC-derived T maps show excellent agreement with ground truth values for both in vitro and in vivo models. Quantitative values are accurate and stable across scan settings and for the physiological range of T values, while showing robustness to main field (B ) inhomogeneities, to variations in T relaxation time, and to magnetization transfer. Extension of the algorithm to two-component fitting yields accurate fat and water T maps along with their relative fractions, similar to a reference three-point Dixon technique. Overall, the EMC platform allows to generate accurate and stable T maps, with a full brain coverage using a standard MESE protocol and at feasible scan times. The utility of EMC-based T maps was demonstrated on several clinical applications, showing robustness to variations in other magnetic properties. The algorithm is available online as a full stand-alone package, including an intuitive graphical user interface.
MRI 的横向弛豫时间 (T) 对组织的成分和病理状态敏感。虽然 T 值的变化可以用作临床生物标志物,但由于 MRI 信号模型的复杂性、协议实施的差异以及硬件不完善,在体内定量此参数具有挑战性。在此,我们提供了对回波调制曲线 (EMC) 平台的详细分析,该平台提供了从 2D 多切片多回波自旋回波 (MESE) 协议准确且可重复的 T 值映射。使用全 Bloch 方程的计算机模拟生成先进的信号模型,该模型考虑了受激回波和传输场 (B) 不均匀性。除了量化 T 值外,EMC 平台还提供质子密度 (PD) 图和脂肪-水分数图。该算法的准确性、可重复性和对 T 值的不敏感性在由美国国家标准与技术研究院构建的体模以及在体内人脑上得到了验证。EMC 衍生的 T 图与体外和体内模型的真实值具有极好的一致性。定量值在扫描设置和生理 T 值范围内准确且稳定,同时对主磁场 (B) 不均匀性、T 弛豫时间变化以及磁化转移具有鲁棒性。该算法扩展到两分量拟合可生成准确的脂肪和水 T 图及其相对分数,类似于参考的三点 Dixon 技术。总体而言,EMC 平台允许使用标准 MESE 协议和可行的扫描时间生成准确且稳定的 T 图,具有全脑覆盖。基于 EMC 的 T 图的实用性在几个临床应用中得到了证明,显示出对其他磁性特性变化的鲁棒性。该算法作为一个完整的独立软件包在线提供,包括直观的图形用户界面。