Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States.
Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States.
Chem Rev. 2024 Nov 13;124(21):11962-12005. doi: 10.1021/acs.chemrev.4c00275. Epub 2024 Oct 28.
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of and genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
遗传密码是所有生命的基础。除了少数例外,核酸信息翻译成蛋白质遵循保守规则,这些规则由密码子定义,每个密码子指定 20 种蛋白质氨基酸中的一种。几十年来,领先的研究小组开发了一系列创新方法,将自然界的氨基酸库扩展到在单个蛋白质中包含一个或多个非典型构建块。在这篇综述中,我们总结了 遗传密码扩展 的历史进展,并强调了最近的创新,这些创新增加了生物化学上可及的单体和密码子的范围。我们进一步总结了工程化细胞翻译的最新知识,以及对调节机制的改变,这些改变提高了遗传密码扩展的整体效率。最后,我们将这些技术的现有局限性提炼为下一代技术必须改进的要点,并推测未来可能克服当前知识差距的策略。