Elbaz Mohammed S M, Shafeghat Melika, Freed Benjamin H, Sarnari Roberto, Zilber Zachary, Avery Ryan, Markl Michael, Allen Bradley D, Carr James
Radiology, Northwestern University, Chicago, Illinois, USA.
Cardiology, Northwestern University, Chicago, Illinois, USA.
J Magn Reson Imaging. 2025 May;61(5):2130-2143. doi: 10.1002/jmri.29635. Epub 2024 Oct 28.
Pulmonary hypertension (PH) is a life-threatening. Differentiation pulmonary arterial hypertension (PAH) from pulmonary venous hypertension (PVH) is important due to distinct treatment protocols. Invasive right heart catheterization (RHC) remains the reference standard but noninvasive alternatives are needed.
PURPOSE/HYPOTHESIS: To evaluate 4D Flow MRI-derived 3D vortex energetics in the left pulmonary artery (LPA) for distinguishing PAH from PVH.
Prospective case-control.
POPULATION/SUBJECTS: Fourteen PAH patients (11 female) and 18 PVH patients (9 female) diagnosed from RHC, 23 healthy controls (9 female).
FIELD STRENGTH/SEQUENCE: 1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession (bSSFP) cardiac cine sequences.
LPA 3D vortex cores were identified using the lambda2 method. Peak vortex-contained kinetic energy (vortex-KE) and viscous energy loss (vortex-EL) were computed from 4D flow MRI. Left and right ventricular (LV, RV) stroke volume (LVSV, RVSV) and ejection fraction (LVEF, RVEF) were computed from bSSFP. In PH patients, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure (PCWR) and pulmonary vascular resistance (PVR) were determined from RHC.
Mann-Whitney U test for group comparisons, Spearman's rho for correlations, logistic regression for identifying predictors of PAH vs. PVH and develop models, area under the receiver operating characteristic curve (AUC) for model performance. Significance was set at P < 0.05.
PAH patients showed significantly lower vortex-KE (37.14 [14.68-78.52] vs. 76.48 [51.07-120.51]) and vortex-EL (9.93 [5.69-25.70] vs. 24.22 [12.20-32.01]) than PVH patients. The combined vortex-KE and LVEF model achieved an AUC of 0.89 for differentiating PAH from PVH. Vortex-EL showed significant negative correlations with mPAP (rho = -0.43), PCWP (rho = 0.37), PVR (rho = -0.64). In the PAH group, PVR was significantly negatively correlated with LPA vortex-KE (rho = -0.73) and vortex-EL (rho = -0.71), and vortex-KE significantly correlated with RVEF (rho = 0.69), RVSV, (rho = 0.70). In the PVH group, vortex-KE (rho = 0.52), vortex-EL significantly correlated with RVSV (rho = 0.58).
These preliminary findings suggest that 4D flow MRI-derived LPA vortex energetics have potential to noninvasively differentiate PAH from PVH and correlate with invasive hemodynamic parameters.
1 TECHNICAL EFFICACY: Stage 3.
肺动脉高压(PH)危及生命。鉴于治疗方案不同,区分肺动脉高压(PAH)和肺静脉高压(PVH)很重要。有创右心导管检查(RHC)仍是参考标准,但需要无创替代方法。
目的/假设:评估通过四维血流磁共振成像(4D Flow MRI)得出的左肺动脉(LPA)三维涡流能量学,以区分PAH和PVH。
前瞻性病例对照研究。
经RHC诊断的14例PAH患者(11例女性)和18例PVH患者(9例女性),23名健康对照者(9例女性)。
场强/序列:1.5T;梯度回波4D血流序列和平衡稳态自由进动(bSSFP)心脏电影序列。
使用lambda2方法识别LPA三维涡流核心。通过4D Flow MRI计算含峰值涡流的动能(涡流-KE)和粘性能量损失(涡流-EL)。通过bSSFP计算左、右心室(LV、RV)每搏输出量(LVSV、RVSV)和射血分数(LVEF、RVEF)。在PH患者中,通过RHC测定平均肺动脉压(mPAP)、肺毛细血管楔压(PCWR)和肺血管阻力(PVR)。
采用Mann-Whitney U检验进行组间比较,Spearman秩相关分析相关性,逻辑回归分析确定PAH与PVH的预测因素并建立模型,采用受试者工作特征曲线下面积(AUC)评估模型性能。显著性设定为P<0.05。
PAH患者的涡流-KE(37.14 [14.68 - 78.52] 对比76.48 [51.07 - 120.51])和涡流-EL(9.93 [5.69 - 25.70] 对比24.22 [12.20 - 32.01])显著低于PVH患者。联合涡流-KE和LVEF模型区分PAH和PVH的AUC为0.89。涡流-EL与mPAP(rho = -0.43)、PCWP(rho = 0.37)、PVR(rho = -0.64)呈显著负相关。在PAH组中,PVR与LPA涡流-KE(rho = -0.73)和涡流-EL(rho = -0.71)显著负相关,且涡流-KE与RVEF(rho = 0.69)、RVSV(rho = 0.70)显著相关。在PVH组中,涡流-KE(rho = 0.52)、涡流-EL与RVSV(rho = 0.58)显著相关。
这些初步研究结果表明,通过4D Flow MRI得出的LPA涡流能量学有潜力无创区分PAH和PVH,并与有创血流动力学参数相关。
1 技术效能:3级。