Suppr超能文献

危重症机械通气患者早期卧床踏车运动:CYCLE(重症监护下踏车运动改善下肢力量)国际多中心随机临床试验的统计分析计划。

Early In-Bed Cycle Ergometry With Critically Ill, Mechanically Ventilated Patients: Statistical Analysis Plan for CYCLE (Critical Care Cycling to Improve Lower Extremity Strength), an International, Multicenter, Randomized Clinical Trial.

机构信息

Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

Physiotherapy Department, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.

出版信息

JMIR Res Protoc. 2024 Oct 28;13:e54451. doi: 10.2196/54451.

Abstract

BACKGROUND

Survivors of critical illness are at risk of developing physical dysfunction following intensive care unit (ICU) discharge. ICU-based rehabilitation interventions, such as early in-bed cycle ergometry, may improve patients' short-term physical function.

OBJECTIVE

Before unblinding and trial database lock, we describe a prespecified statistical analysis plan (SAP) for the CYCLE (Critical Care Cycling to Improve Lower Extremity Strength) randomized controlled trial (RCT).

METHODS

CYCLE is a 360-patient, international, multicenter, open-label, parallel-group RCT (1:1 ratio) with blinded primary outcome assessment at 3 days post-ICU discharge. The principal investigator and statisticians of CYCLE prepared this SAP with approval from the steering committee and coinvestigators. The SAP defines the primary and secondary outcomes (including adverse events) and describes the planned primary, secondary, and subgroup analyses. The primary outcome of the CYCLE trial is the Physical Function Intensive Care Unit Test-scored (PFIT-s) at 3 days post-ICU discharge. The PFIT-s is a reliable and valid performance-based measure. We plan to use a frequentist statistical framework for all analyses. We will conduct a linear regression to evaluate the primary outcome, incorporating randomization as an independent variable and adjusting for age (≥65 years versus <65 years) and center. The regression results will be reported as mean differences in PFIT-s scores with corresponding 95% CIs and P values. We consider a 1-point difference in PFIT-s score to be clinically important. Additionally, we plan to conduct 3 subgroup analyses: age (≥65 years versus <65 years), frailty (Baseline Clinical Frailty Scale ≥5 versus <5), and sex (male versus female).

RESULTS

CYCLE was funded in 2017, and enrollment was completed in May 2023. Data analyses are complete, and the first results were submitted for publication in 2024.

CONCLUSIONS

We developed and present an SAP for the CYCLE RCT and will adhere to it for all analyses. This study will add to the growing body of evidence evaluating the efficacy and safety of ICU-based rehabilitation interventions.

TRIAL REGISTRATION

ClinicalTrials.gov NCT03471247; https://clinicaltrials.gov/ct2/show/NCT03471247 and NCT02377830; https://clinicaltrials.gov/ct2/show/NCT02377830.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/54451.

摘要

背景

重症监护病房(ICU)出院后的危重病幸存者存在发生身体功能障碍的风险。基于 ICU 的康复干预措施,如早期床上周期测力计运动,可能会改善患者的短期身体功能。

目的

在揭盲和试验数据库锁定之前,我们描述了一项针对 CYCLE(Critical Care Cycling to Improve Lower Extremity Strength)随机对照试验(RCT)的预设统计分析计划(SAP)。

方法

CYCLE 是一项 360 例患者的国际多中心开放性标签平行组 RCT(1:1 比例),在 ICU 出院后 3 天进行盲法主要结局评估。CYCLE 的主要研究者和统计学家在指导委员会和共同研究者的批准下制定了本 SAP。SAP 定义了主要和次要结局(包括不良事件),并描述了计划的主要、次要和亚组分析。CYCLE 试验的主要结局是 ICU 出院后 3 天的物理功能 ICU 测试评分(PFIT-s)。PFIT-s 是一种可靠有效的基于表现的测量方法。我们计划对所有分析使用一个频率论统计框架。我们将进行线性回归分析评估主要结局,将随机化作为一个独立变量,并调整年龄(≥65 岁与<65 岁)和中心。回归结果将以 PFIT-s 评分的平均差异以及相应的 95%置信区间(CI)和 P 值报告。我们认为 PFIT-s 评分 1 分的差异具有临床意义。此外,我们还计划进行 3 项亚组分析:年龄(≥65 岁与<65 岁)、虚弱(基线临床虚弱量表≥5 与<5)和性别(男性与女性)。

结果

CYCLE 于 2017 年获得资助,2023 年 5 月完成了入组。数据分析已经完成,第一批结果已于 2024 年提交发表。

结论

我们为 CYCLE RCT 制定并提出了 SAP,并将按照其进行所有分析。这项研究将为评估 ICU 为基础的康复干预措施的疗效和安全性提供更多证据。

试验注册

ClinicalTrials.gov NCT03471247;https://clinicaltrials.gov/ct2/show/NCT03471247 和 NCT02377830;https://clinicaltrials.gov/ct2/show/NCT02377830。

国际注册报告标识符(IRRID):RR1-10.2196/54451。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba6/11555464/4de3e4f2f1c2/resprot_v13i1e54451_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验