Suppr超能文献

基于数据驱动的机器学习模型在预测小儿扁桃体切除术/腺样体切除术患者苏醒期谵妄中的应用

Data-driven Machine Learning Models for Risk Stratification and Prediction of Emergence Delirium in Pediatric Patients Underwent Tonsillectomy/Adenotonsillectomy.

机构信息

Department of Pediatric Anaesthesia and Intensive Care, S.C. SOD Anestesia e Rianimazione Pediatrica, Ospedale G. Salesi, 60123 Ancona, Italy.

BTech - Artificial Intelligence and Data Science, St Joseph's College of Engineering, 600119 Chennai, India.

出版信息

Ann Ital Chir. 2024;95(5):944-955. doi: 10.62713/aic.3485.

Abstract

AIM

In the pediatric surgical population, Emergence Delirium (ED) poses a significant challenge. This study aims to develop and validate machine learning (ML) models to identify key features associated with ED and predict its occurrence in children undergoing tonsillectomy or adenotonsillectomy.

METHODS

The analysis involved data cleaning, exploratory data analysis (EDA), supervised predictive modeling, and unsupervised learning on a medical dataset (n = 423). After preliminary data cleaning, EDA encompassed plotting histograms, boxplots, pairplots, and correlation heatmaps to understand variable distributions and relationships. Four predictive models were trained including logistic regression (LR), random forest (RF), Support Vector Machine (SVM), and Gradient Boosting (XGBoost). The models were evaluated and compared using Receiver Operating Characteristic (ROC) Area Under the Curve (AUC), precision, recall, and feature importance. The RF model showed better performance and was used for the test (AUC-ROC 0.96, precision 1.00, and recall 0.92 on the validation set). K-means clustering was applied to find groups within the data. Elbow method and silhouette scores were used to determine the optimal number of clusters. The formed clusters were analyzed by aggregating features to understand the characteristics of each cluster.

RESULTS

EDA revealed significant positive correlations between age, weight, American Society of Anesthesiologists (ASA) health score, and surgery duration with the risk of developing ED. Among the ML models, RF achieved the highest performance. Key predictive variables, based on the model's feature importance, included delirium screening scales, extubation time, and time to regain consciousness. Unsupervised K-means clustering identified 2-3 optimal clusters, which represented distinct patient subgroups: younger, healthier, low-risk individuals (cluster 0), and older patients with increasing chronic disease burden, higher delirium screening scores, and consequently higher post-operative delirium risk (clusters 1 and 2).

CONCLUSIONS

ML techniques are valuable tools for extracting insights and making accurate predictions from healthcare data. High-performing algorithm-based models can be implemented for clinical decision support systems, facilitating early identification and intervention for ED in pediatric patients. By investigating various variables, it is possible to assess risk and implement preventive measures effectively. Furthermore, unsupervised clustering reveals distinct patient subgroups, enabling personalized perioperative management strategies and enhancing overall patient care.

摘要

目的

在儿科手术患者中,术后谵妄(ED)是一个重大挑战。本研究旨在开发和验证机器学习(ML)模型,以识别与 ED 相关的关键特征,并预测行扁桃体切除术或扁桃体腺样体切除术的儿童发生 ED 的可能性。

方法

分析包括数据清理、探索性数据分析(EDA)、有监督预测建模和对医疗数据集(n=423)进行无监督学习。在初步数据清理后,EDA 包括绘制直方图、箱线图、双变量图和相关热图,以了解变量分布和关系。训练了四种预测模型,包括逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)和梯度提升(XGBoost)。使用接收者操作特征(ROC)曲线下面积(AUC)、精度、召回率和特征重要性对模型进行评估和比较。RF 模型表现更好,用于测试(验证集上的 AUC-ROC 为 0.96、精度为 1.00、召回率为 0.92)。应用 K-均值聚类在数据中找到群组。使用肘部法和轮廓得分来确定最佳聚类数。通过聚合特征来分析形成的聚类,以了解每个聚类的特征。

结果

EDA 显示年龄、体重、美国麻醉医师协会(ASA)健康评分和手术持续时间与发生 ED 的风险之间存在显著正相关。在 ML 模型中,RF 表现最佳。基于模型特征重要性的关键预测变量包括谵妄筛查量表、拔管时间和意识恢复时间。无监督 K-均值聚类确定了 2-3 个最佳聚类,代表了不同的患者亚组:年龄较小、健康状况较好、风险较低的个体(聚类 0),以及年龄较大的患者,其慢性疾病负担增加,谵妄筛查评分较高,术后谵妄风险较高(聚类 1 和 2)。

结论

ML 技术是从医疗保健数据中提取见解和进行准确预测的有价值工具。高性能基于算法的模型可用于临床决策支持系统,有助于早期识别和干预儿科患者的 ED。通过研究各种变量,可以有效地评估风险并实施预防措施。此外,无监督聚类揭示了不同的患者亚组,能够实现个性化围手术期管理策略并提高整体患者护理水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验