Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
Department of Radiology, Ningbo Haishu People's Hospital, Ningbo, 315000, China.
Eur Spine J. 2024 Dec;33(12):4710-4719. doi: 10.1007/s00586-024-08538-6. Epub 2024 Oct 29.
Aims to establish the superiority of our proposed model over the state-of-the-art vertebra-focused landmark detection network (VFLDNet) in automating Cobb angle estimation from spinal radiographs.
Utilizing a private dataset for external validation, we compared the performance of our center-point detection-based vertebra localization and tilt estimation network (VLTENet) with the key-point detection-based VFLDNet. Both models' Cobb angle predictions were rigorously evaluated against manual consensus score using metrics such as mean absolute error (MAE), correlation coefficient, intraclass correlation coefficient (ICC), Fleiss' kappa, Bland-Altman analysis, and classification metrics [sensitivity (SN), specificity, accuracy] focusing on major curve estimation and scoliosis severity classification.
A retrospective analysis of 118 cases with 342 Cobb angle measurements revealed that our model achieved a MAE of 2.15° for total Cobb angles and 1.89° for the major curve, significantly outperforming VFLDNet's MAE of 2.80°and 2.57°, respectively. Both models demonstrated robust correlation and ICC, but our model excelled in classification consistency, particularly in predicting major curve magnitude (ours: kappa = 0.83; VFLDNet: kappa = 0.67). In subgroup analyses by scoliosis severity, our model consistently surpassed VFLDNet, displaying superior mean (SD) differences, narrower limits of agreement, and higher SN, specificity, and accuracy, most notably in moderate (ours: SN = 86.84%; VFLDNet: SN = 83.16%) to severe (ours: SN = 92.86%; VFLDNet: SN = 85.71%) scoliosis.
Our model emerges as the superior choice for automated Cobb angle estimation, particularly in assessing major curve and moderate to severe scoliosis, underscoring its potential to revolutionize clinical workflows and enhance patient care.
旨在确立我们提出的模型在自动从脊柱 X 光片中估计 Cobb 角方面优于最先进的基于椎骨关键点检测的网络(VFLDNet)。
利用一个私人数据集进行外部验证,我们比较了基于中心点检测的椎骨定位和倾斜估计网络(VLTENet)与基于关键点检测的 VFLDNet 的性能。使用平均绝对误差(MAE)、相关系数、组内相关系数(ICC)、Fleiss' kappa、Bland-Altman 分析和分类指标[重点关注主要曲线估计和脊柱侧凸严重程度分类的灵敏度(SN)、特异性、准确性]等指标,严格评估了这两种模型对人工共识评分的 Cobb 角预测值。
对 118 例 342 个 Cobb 角测量值的回顾性分析表明,我们的模型的总 Cobb 角 MAE 为 2.15°,主要曲线的 MAE 为 1.89°,明显优于 VFLDNet 的 2.80°和 2.57°。两种模型均表现出强大的相关性和 ICC,但我们的模型在分类一致性方面表现出色,特别是在预测主要曲线幅度方面(我们的模型:kappa=0.83;VFLDNet:kappa=0.67)。在按脊柱侧凸严重程度进行的亚组分析中,我们的模型始终优于 VFLDNet,显示出更大的平均(SD)差异、更窄的一致性界限以及更高的 SN、特异性和准确性,尤其是在中度(我们的模型:SN=86.84%;VFLDNet:SN=83.16%)至重度(我们的模型:SN=92.86%;VFLDNet:SN=85.71%)脊柱侧凸中。
我们的模型是自动 Cobb 角估计的首选模型,特别是在评估主要曲线和中度至重度脊柱侧凸方面,突显了其在改变临床工作流程和提高患者护理方面的潜力。