Suppr超能文献

使用机器学习对放射学研究中的脊柱侧弯进行自动化测量:人工智能与临床报告的比较。

Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports.

机构信息

Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Department of Radiology, University of California San Diego, 9300 Campus Point Drive, La Jolla, CA, 92037, USA.

出版信息

J Digit Imaging. 2022 Jun;35(3):524-533. doi: 10.1007/s10278-022-00595-x. Epub 2022 Feb 11.

Abstract

Scoliosis is a condition of abnormal lateral spinal curvature affecting an estimated 2 to 3% of the US population, or seven million people. The Cobb angle is the standard measurement of spinal curvature in scoliosis but is known to have high interobserver and intraobserver variability. Thus, the objective of this study was to build and validate a system for automatic quantitative evaluation of the Cobb angle and to compare AI generated and human reports in the clinical setting. After IRB was obtained, we retrospectively collected 2150 frontal view scoliosis radiographs at a tertiary referral center (January 1, 2019, to January 1, 2021, ≥ 16 years old, no hardware). The dataset was partitioned into 1505 train (70%), 215 validation (10%), and 430 test images (20%). All thoracic and lumbar vertebral bodies were segmented with bounding boxes, generating approximately 36,550 object annotations that were used to train a Faster R-CNN Resnet-101 object detection model. A controller algorithm was written to localize vertebral centroid coordinates and derive the Cobb properties (angle and endplate) of dominant and secondary curves. AI-derived Cobb angle measurements were compared to the clinical report measurements, and the Spearman rank-order demonstrated significant correlation (0.89, p < 0.001). Mean difference between AI and clinical report angle measurements was 7.34° (95% CI: 5.90-8.78°), which is similar to published literature (up to 10°). We demonstrate the feasibility of an AI system to automate measurement of level-by-level spinal angulation with performance comparable to radiologists.

摘要

脊柱侧凸是一种异常的脊柱侧向弯曲的病症,影响了美国约 2%至 3%的人群,即 700 万人。Cobb 角是脊柱侧凸中脊柱弯曲度的标准测量方法,但已知其具有高度的观察者间和观察者内变异性。因此,本研究的目的是建立和验证一种自动定量评估 Cobb 角的系统,并在临床环境中比较人工智能生成的报告和医生的报告。在获得 IRB 后,我们回顾性地收集了一家三级转诊中心的 2150 张脊柱侧凸正位 X 光片(2019 年 1 月 1 日至 2021 年 1 月 1 日,年龄≥16 岁,无内固定)。数据集分为 1505 个训练集(70%)、215 个验证集(10%)和 430 个测试集。所有的胸椎和腰椎椎体都用边界框进行了分割,生成了大约 36550 个物体注释,用于训练 Faster R-CNN Resnet-101 物体检测模型。编写了一个控制器算法来定位椎体中心点坐标,并推导出主导曲线和次要曲线的 Cobb 属性(角度和终板)。人工智能生成的 Cobb 角度测量值与临床报告测量值进行了比较,Spearman 秩相关显示有显著相关性(0.89,p<0.001)。人工智能和临床报告角度测量值之间的平均差异为 7.34°(95%CI:5.90-8.78°),与已发表的文献相似(高达 10°)。我们证明了人工智能系统自动测量脊柱分层角度的可行性,其性能可与放射科医生相媲美。

相似文献

1
Automating Scoliosis Measurements in Radiographic Studies with Machine Learning: Comparing Artificial Intelligence and Clinical Reports.
J Digit Imaging. 2022 Jun;35(3):524-533. doi: 10.1007/s10278-022-00595-x. Epub 2022 Feb 11.
4
The effectiveness of selective thoracic fusion for treating adolescent idiopathic scoliosis: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Nov;13(11):4-16. doi: 10.11124/jbisrir-2015-2338.
5
Cobb Angle Measurement of Spine from X-Ray Images Using Convolutional Neural Network.
Comput Math Methods Med. 2019 Feb 19;2019:6357171. doi: 10.1155/2019/6357171. eCollection 2019.
6
Convolutional Neural Network to Segment Laminae on 3D Ultrasound Spinal Images to Assist Cobb Angle Measurement.
Ann Biomed Eng. 2022 Apr;50(4):401-412. doi: 10.1007/s10439-022-02925-0. Epub 2022 Feb 24.
7
Reliability of radiographic measures for infantile idiopathic scoliosis.
J Bone Joint Surg Am. 2012 Jun 20;94(12):e86. doi: 10.2106/JBJS.K.00311.
8
Variability in Cobb angle measurements using reformatted computerized tomography scans.
Spine (Phila Pa 1976). 2005 Jul 15;30(14):1664-9. doi: 10.1097/01.brs.0000169449.68870.f8.
10
A multi-stage ensemble network system to diagnose adolescent idiopathic scoliosis.
Eur Radiol. 2022 Sep;32(9):5880-5889. doi: 10.1007/s00330-022-08692-9. Epub 2022 Mar 29.

引用本文的文献

1
A 20-year research trend analysis of the artificial intelligence on scoliosis using bibliometric methods.
Front Pediatr. 2025 Aug 13;13:1531827. doi: 10.3389/fped.2025.1531827. eCollection 2025.
2
Management of adolescent scoliosis: a comprehensive review of etiology and rehabilitation.
Front Pediatr. 2025 Jul 16;13:1596400. doi: 10.3389/fped.2025.1596400. eCollection 2025.
7
Deep learning algorithm enables automated Cobb angle measurements with high accuracy.
Skeletal Radiol. 2025 Jul;54(7):1469-1478. doi: 10.1007/s00256-024-04853-7. Epub 2024 Dec 17.
8
Superior performance of a center-point AI model over VFLDNet in automated cobb angle estimation for scoliosis assessment.
Eur Spine J. 2024 Dec;33(12):4710-4719. doi: 10.1007/s00586-024-08538-6. Epub 2024 Oct 29.
9
Anatomical landmark detection on bi-planar radiographs for predicting spinopelvic parameters.
Spine Deform. 2025 Mar;13(2):423-431. doi: 10.1007/s43390-024-00990-0. Epub 2024 Oct 23.
10
Radiographic Analysis of Scoliosis Using Convolutional Neural Network in Clinical Practice.
J Korean Soc Radiol. 2024 Sep;85(5):926-936. doi: 10.3348/jksr.2023.0111. Epub 2024 Apr 29.

本文引用的文献

1
The measurement of Cobb angle based on spine X-ray images using multi-scale convolutional neural network.
Phys Eng Sci Med. 2021 Sep;44(3):809-821. doi: 10.1007/s13246-021-01032-z. Epub 2021 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验