Zhao Moxin, Meng Nan, Cheung Jason Pui Yin, Yu Chenxi, Lu Pengyu, Zhang Teng
Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong.
Bioengineering (Basel). 2023 Nov 20;10(11):1333. doi: 10.3390/bioengineering10111333.
The Cobb angle (CA) serves as the principal method for assessing spinal deformity, but manual measurements of the CA are time-consuming and susceptible to inter- and intra-observer variability. While learning-based methods, such as SpineHRNet+, have demonstrated potential in automating CA measurement, their accuracy can be influenced by the severity of spinal deformity, image quality, relative position of rib and vertebrae, etc. Our aim is to create a reliable learning-based approach that provides consistent and highly accurate measurements of the CA from posteroanterior (PA) X-rays, surpassing the state-of-the-art method. To accomplish this, we introduce SpineHRformer, which identifies anatomical landmarks, including the vertices of endplates from the 7th cervical vertebra (C7) to the 5th lumbar vertebra (L5) and the end vertebrae with different output heads, enabling the calculation of CAs. Within our SpineHRformer, a backbone HRNet first extracts multi-scale features from the input X-ray, while transformer blocks extract local and global features from the HRNet outputs. Subsequently, an output head to generate heatmaps of the endplate landmarks or end vertebra landmarks facilitates the computation of CAs. We used a dataset of 1934 PA X-rays with diverse degrees of spinal deformity and image quality, following an 8:2 ratio to train and test the model. The experimental results indicate that SpineHRformer outperforms SpineHRNet+ in landmark detection (Mean Euclidean Distance: 2.47 pixels vs. 2.74 pixels), CA prediction (Pearson correlation coefficient: 0.86 vs. 0.83), and severity grading (sensitivity: normal-mild; 0.93 vs. 0.74, moderate; 0.74 vs. 0.77, severe; 0.74 vs. 0.7). Our approach demonstrates greater robustness and accuracy compared to SpineHRNet+, offering substantial potential for improving the efficiency and reliability of CA measurements in clinical settings.
Cobb角(CA)是评估脊柱畸形的主要方法,但手动测量CA既耗时,又容易受到观察者间和观察者内差异的影响。虽然基于学习的方法,如SpineHRNet+,在自动化CA测量方面已显示出潜力,但其准确性会受到脊柱畸形严重程度、图像质量、肋骨与椎骨的相对位置等因素的影响。我们的目标是创建一种可靠的基于学习的方法,能从正位(PA)X线片中提供一致且高度准确的CA测量值,超越现有最先进的方法。为实现这一目标,我们引入了SpineHRformer,它能识别包括从第7颈椎(C7)到第5腰椎(L5)的终板顶点以及不同输出头的终椎等解剖标志,从而能够计算Cobb角。在我们的SpineHRformer中,骨干网络HRNet首先从输入的X线片中提取多尺度特征,而Transformer模块则从HRNet的输出中提取局部和全局特征。随后,用于生成终板标志或终椎标志热图的输出头有助于Cobb角的计算。我们使用了一个包含1934张具有不同程度脊柱畸形和图像质量的PA X线片的数据集,按照8:2的比例训练和测试模型。实验结果表明,SpineHRformer在标志检测(平均欧几里得距离:2.47像素对2.74像素)、CA预测(皮尔逊相关系数:0.86对0.83)和严重程度分级(敏感性:正常-轻度;0.93对0.74,中度;0.74对0.77,重度;0.74对0.7)方面均优于SpineHRNet+。与SpineHRNet+相比,我们的方法展现出更高的稳健性和准确性,在临床环境中提高CA测量的效率和可靠性方面具有巨大潜力。