Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
Nat Commun. 2024 Oct 28;15(1):9284. doi: 10.1038/s41467-024-53520-x.
Cancer genomes are rife with genetic variants; one key outcome of this variation is widespread gain-of-cysteine mutations. These acquired cysteines can be both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain unidentified via chemoproteomics; identification is a critical step to enable functional analysis, including assessment of potential druggability and susceptibility to oxidation. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine genetic variation. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized two-stage false discovery rate (FDR) error controlled proteomic search, which is further enhanced with a user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that cysteine acquisition is a ubiquitous feature of both healthy and cancer genomes that is further elevated in the context of decreased DNA repair. Reference cysteines proximal to missense variants are also found to be pervasive, supporting heretofore untapped opportunities for variant-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and is compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
癌症基因组中存在大量的遗传变异;这种变异的一个关键结果是广泛存在获得性半胱氨酸突变。这些获得的半胱氨酸可以是驱动突变,也可以是精准治疗的靶点。然而,尽管它们无处不在,但几乎所有获得的半胱氨酸仍然无法通过化学蛋白质组学来识别;鉴定是实现功能分析的关键步骤,包括评估潜在的可成药性和对氧化的敏感性。在这里,我们将半胱氨酸化学蛋白质组学(一种能够在全蛋白质组范围内精确定位功能、氧化还原敏感和潜在可成药的残基的技术)与基因组学相结合,揭示隐藏的半胱氨酸遗传变异景观。我们的化学蛋白质组学平台整合了化学蛋白质组学、全外显子组和 RNA-seq 数据,以及一个定制的两阶段错误发现率(FDR)控制的蛋白质搜索,该搜索通过用户友好的 FragPipe 界面得到进一步增强。化学蛋白质组学分析表明,获得性半胱氨酸是健康和癌症基因组的普遍特征,在 DNA 修复减少的情况下进一步升高。还发现,位于错义变体附近的参考半胱氨酸也很普遍,这为开发针对变体特异性化学探针的新机会提供了支持。由于化学蛋白质组学进一步通过与样本匹配的组合变体数据库来区分,并且与氧化还原蛋白质组学和小分子筛选兼容,我们预计它将在指导蛋白质特定生物学和治疗发现方面具有广泛的应用。