Sanaat Amirhossein, Hu Yiyi, Boccalini Cecilia, Salimi Yazdan, Mansouri Zahra, Teixeira Eliluane Pirazzo Andrade, Mathoux Gregory, Garibotto Valentina, Zaidi Habib
From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
Clin Nucl Med. 2025 Jan 1;50(1):1-10. doi: 10.1097/RLU.0000000000005511. Epub 2024 Oct 29.
Multiplexed PET imaging revolutionized clinical decision-making by simultaneously capturing various radiotracer data in a single scan, enhancing diagnostic accuracy and patient comfort. Through a transformer-based deep learning, this study underscores the potential of advanced imaging techniques to streamline diagnosis and improve patient outcomes.
The research cohort consisted of 120 patients spanning from cognitively unimpaired individuals to those with mild cognitive impairment, dementia, and other mental disorders. Patients underwent various imaging assessments, including 3D T1-weighted MRI, amyloid PET scans using either 18 F-florbetapir (FBP) or 18 F-flutemetamol (FMM), and 18 F-FDG PET. Summed images of FMM/FBP and FDG were used as proxy for simultaneous scanning of 2 different tracers. A SwinUNETR model, a convolution-free transformer architecture, was trained for image translation. The model was trained using mean square error loss function and 5-fold cross-validation. Visual evaluation involved assessing image similarity and amyloid status, comparing synthesized images with actual ones. Statistical analysis was conducted to determine the significance of differences.
Visual inspection of synthesized images revealed remarkable similarity to reference images across various clinical statuses. The mean centiloid bias for dementia, mild cognitive impairment, and healthy control subjects and for FBP tracers is 15.70 ± 29.78, 0.35 ± 33.68, and 6.52 ± 25.19, respectively, whereas for FMM, it is -6.85 ± 25.02, 4.23 ± 23.78, and 5.71 ± 21.72, respectively. Clinical evaluation by 2 readers further confirmed the model's efficiency, with 97 FBP/FMM and 63 FDG synthesized images (from 120 subjects) found similar to ground truth diagnoses (rank 3), whereas 3 FBP/FMM and 15 FDG synthesized images were considered nonsimilar (rank 1). Promising sensitivity, specificity, and accuracy were achieved in amyloid status assessment based on synthesized images, with an average sensitivity of 95 ± 2.5, specificity of 72.5 ± 12.5, and accuracy of 87.5 ± 2.5. Error distribution analyses provided valuable insights into error levels across brain regions, with most falling between -0.1 and +0.2 SUV ratio. Correlation analyses demonstrated strong associations between actual and synthesized images, particularly for FMM images (FBP: Y = 0.72X + 20.95, R2 = 0.54; FMM: Y = 0.65X + 22.77, R2 = 0.77).
This study demonstrated the potential of a novel convolution-free transformer architecture, SwinUNETR, for synthesizing realistic FDG and FBP/FMM images from summation scans mimicking simultaneous dual-tracer imaging.
多重正电子发射断层显像(PET)成像通过在单次扫描中同时获取各种放射性示踪剂数据,彻底改变了临床决策方式,提高了诊断准确性并提升了患者舒适度。通过基于变换器的深度学习,本研究强调了先进成像技术在简化诊断和改善患者预后方面的潜力。
研究队列包括120名患者,涵盖认知未受损个体、轻度认知障碍患者、痴呆患者及其他精神障碍患者。患者接受了各种成像评估,包括三维T1加权磁共振成像(MRI)、使用18F-氟比他班(FBP)或18F-氟替美莫(FMM)的淀粉样蛋白PET扫描以及18F-氟代脱氧葡萄糖(FDG)PET扫描。FMM/FBP和FDG的叠加图像被用作同时扫描两种不同示踪剂的替代。一种无卷积变换器架构的SwinUNETR模型被训练用于图像转换。该模型使用均方误差损失函数和五折交叉验证进行训练。视觉评估包括评估图像相似度和淀粉样蛋白状态,将合成图像与实际图像进行比较。进行统计分析以确定差异的显著性。
对合成图像的视觉检查显示,在各种临床状态下,合成图像与参考图像具有显著相似性。痴呆、轻度认知障碍和健康对照受试者以及FBP示踪剂的平均百分类偏差分别为15.70±29.78、0.35±33.68和6.52±25.19,而对于FMM,分别为-6.85±25.02、4.23±23.78和5.71±21.72。两位阅片者的临床评估进一步证实了该模型的有效性,在120名受试者的97幅FBP/FMM和63幅FDG合成图像中,发现与真实诊断相似(排名第3),而3幅FBP/FMM和15幅FDG合成图像被认为不相似(排名第1)。基于合成图像的淀粉样蛋白状态评估取得了有前景的敏感性、特异性和准确性,平均敏感性为95±2.5,特异性为72.5±12.5,准确性为87.5±2.5。误差分布分析为各脑区的误差水平提供了有价值的见解,大多数误差落在-0.1至+0.2标准化摄取值(SUV)比值之间。相关性分析表明实际图像与合成图像之间存在强关联,尤其是对于FMM图像(FBP:Y = 0.72X + 20.95,R2 = 0.54;FMM:Y = 0.65X + 22.77,R2 = 0.77)。
本研究证明了一种新型无卷积变换器架构SwinUNETR的潜力,该架构可从模拟同时双示踪剂成像的叠加扫描中合成逼真的FDG和FBP/FMM图像。