Suppr超能文献

基于深度学习的单次会话三重示踪剂脑PET扫描:一项使用临床数据的模拟研究

Deep learning-based triple-tracer brain PET scanning in a single session: A simulation study using clinical data.

作者信息

Hu Yiyi, Sanaat Amirhossein, Mathoux Gregory, Eliluane Pirazzo Andrade Teixeira, Garibotto Valentina, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Geneva, Switzerland.

出版信息

Neuroimage. 2025 Jun;313:121246. doi: 10.1016/j.neuroimage.2025.121246. Epub 2025 Apr 30.

Abstract

OBJECTIVES

Multiplexed Positron Emission Tomography (PET) imaging allows simultaneous acquisition of multiple radiotracer signals, thus enhancing diagnostic capabilities, reducing scan times, and improving patient comfort. Traditional methods often require significant delays between tracer injections, leading to physiological changes and noise interference. Recent advancements, including multi-tracer compartment modeling and machine learning, provide promising solutions. This study explores the deep learning (DL)-based single-session triple-tracer brain PET imaging protocol, aiming at simplifying multi-tracer PET imaging, while reducing radiation exposure.

METHODS

The study uses the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, which includes cognitively normal (CN) patients, as well as patients with mild cognitive impairment (MCI) and dementia. The dataset also includes PET scans acquired with amyloid (F-florbetaben [FBB] or F-florbetapir [FBP]), F-Fluorodeoxyglucose (FDG), and tau F-flortaucipir (FTP). To mimic the effect of simultaneous acquisition of multiple PET tracers, we generated synthetic dual- and triple-tracer images by summing FBP/FBB, FTP, and FDG scans. A DL model based on Swin Transformer architecture was developed to separate these signals, using five-fold cross-validation and mean squared error (MSE) loss. The synthetic PET images were evaluated using established image quality metrics, including MSE, structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). In addition, clinical evaluation was conducted by two nuclear medicine specialists to assess the amyloid and tau status in the synthetic and reference images.

RESULTS

The proposed DL model effectively synthesized realistic FBB/FBP and FDG images from dual- and triple-tracer PET images. Although the proposed DL model's performance in generating FTP images was less successful, it remains promising. The clinical evaluation revealed that the amyloid status estimated from the synthetic images led to a sensitivity of 92% and specificity of 86% for FBB, while it showed a sensitivity of 93% and specificity of 67% for tau status using FBP extracted from the triple-tracer images. The calculated quantitative metrics showed that the mean error for synthetic amyloid images (FBB: 0.03 SUV, FBP: 0.00 SUV) was higher than FDG for FBB (0.02 SUV) but lower than FDG for FBP (-0.01 SUV), and comparable to FTP (FBB: 0.03 SUV, FBP: 0.00 SUV). Voxel-wise correlation analysis demonstrated strong correlation between synthetic and reference images, particularly for amyloid images (FBB: y = 0.98x + 0.00, R² = 0.85; FBP: y = 1.11x + 0.04, R² = 0.73), while FTP (FBB: y = 0.87x + 0.14, R² = 0.51; FBP: y = 0.98x + 0.09, R² = 0.59) and FDG images (FBB: y = 1.01x + 0.18, R² = 0.85; FBP: y = 0.96x + 1.37, R² = 0.77) showed moderate correlations.

CONCLUSION

Our study demonstrates that the suggested DL model can separate the signals belonging to three different radiotracers from simultaneous triple-tracer PET scans. This method may make multiplex scanning feasible in the clinic, hence reducing the scanning time, radiation hazard and improving patient comfort.

摘要

目的

多路正电子发射断层扫描(PET)成像允许同时采集多个放射性示踪剂信号,从而增强诊断能力、缩短扫描时间并提高患者舒适度。传统方法通常在示踪剂注射之间需要显著延迟,导致生理变化和噪声干扰。包括多示踪剂隔室建模和机器学习在内的最新进展提供了有前景的解决方案。本研究探索基于深度学习(DL)的单时段三示踪剂脑PET成像方案,旨在简化多示踪剂PET成像,同时减少辐射暴露。

方法

该研究使用阿尔茨海默病神经成像计划(ADNI)数据集,其中包括认知正常(CN)患者以及轻度认知障碍(MCI)和痴呆患者。该数据集还包括使用淀粉样蛋白(F-氟贝他班[FBB]或F-氟贝他吡[FBP])、F-氟脱氧葡萄糖(FDG)和tau F-氟替泊匹(FTP)进行的PET扫描。为了模拟同时采集多个PET示踪剂的效果,我们通过对FBP/FBB、FTP和FDG扫描求和生成了合成双示踪剂和三示踪剂图像。开发了一种基于Swin Transformer架构的DL模型来分离这些信号,使用五折交叉验证和均方误差(MSE)损失。使用包括MSE、结构相似性指数(SSIM)和峰值信噪比(PSNR)在内的既定图像质量指标对合成PET图像进行评估。此外,由两名核医学专家进行临床评估,以评估合成图像和参考图像中的淀粉样蛋白和tau状态。

结果

所提出的DL模型有效地从双示踪剂和三示踪剂PET图像中合成了逼真的FBB/FBP和FDG图像。尽管所提出的DL模型在生成FTP图像方面的性能不太成功,但仍有前景。临床评估显示,从合成图像估计的淀粉样蛋白状态对FBB的敏感性为92%,特异性为86%,而使用从三示踪剂图像中提取的FBP对tau状态的敏感性为93%,特异性为67%。计算得到的定量指标显示,合成淀粉样蛋白图像(FBB:0.03 SUV,FBP:0.00 SUV)的平均误差高于FBB的FDG(0.02 SUV),但低于FBP的FDG(-0.01 SUV),且与FTP相当(FBB:0.03 SUV,FBP:0.00 SUV)。体素级相关性分析表明合成图像和参考图像之间有很强的相关性,特别是对于淀粉样蛋白图像(FBB:y = 0.98x + 0.00,R² = 0.85;FBP:y = 1.11x + 0.04,R² = 0.73),而FTP(FBB:y = 0.87x + 0.14,R² = 0.51;FBP:y = 0.98x + 0.09,R² = 0.59)和FDG图像(FBB:y = 1.01x + 0.18,R² = 0.85;FBP:y = 0.96x + 1.37,R² = 0.77)显示出中等相关性。

结论

我们的研究表明,所建议的DL模型可以从同时进行的三示踪剂PET扫描中分离出属于三种不同放射性示踪剂的信号。这种方法可能使临床中的多路扫描可行,从而减少扫描时间、辐射危害并提高患者舒适度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验