Suppr超能文献

用于显著提高柔性聚氯乙烯阻燃和抑烟性能的分级纳米/微阵列结构CuMgAl-LDH/rGO杂化物

Hierarchical Nano/Micro-Array Structured CuMgAl-LDH/rGO Hybrids for Remarkably Improved Flame Retardancy and Smoke Suppression Performance of Flexible Polyvinyl Chloride.

作者信息

Zhang Zixuan, Chen Yuyang, Wang Defu, Lin Yanjun, Li Kaitao, Fan Guoli, Li Feng

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, China.

Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining 810016, China.

出版信息

ACS Appl Mater Interfaces. 2024 Nov 6;16(44):61224-61238. doi: 10.1021/acsami.4c09430. Epub 2024 Oct 29.

Abstract

In this study, we explored the rational integration of layered double hydroxides (LDHs) with reduced graphene oxide (rGO) to create a hierarchical nano/microarray structured CuMgAl-LDH/rGO hybrid aimed at enhancing the flame retardancy and smoke suppression properties of polymer nanocomposites. The results indicated that the limiting oxygen index (LOI) value of the G-CuMgAl/polyvinyl chloride (PVC) composite reached 35.8%, reflecting a 6.4% increase compared to pristine PVC (29.4%), and achieved a UL-94 V-0 rating. Furthermore, in comparison to pristine PVC, the peak heat release rate (PHRR) of the G-CuMgAl/PVC composite was significantly reduced by 40.2%; the total heat release rate (THR) decreased by 24.3%; the maximum average heat release rate (MARHE) diminished by 41.6%; the peak smoke production (PSPR) decreased by 37.8%; the total smoke production (TSP) was reduced by 31.3%; and the average effective heat of combustion (av-EHC) decreased by 15.2%. The enhanced flame retardancy and reduced smoke production can primarily be attributed to the multiple synergistic interactions among the highly dispersed constituents and the nano/microstructures, which effectively impede the transfer of heat, mass, and O from various directions while preventing further combustion of the underlying matrix by creating a tortuous path in the condensed phase. Additionally, this study provides a novel perspective on the design and synthesis of structured LDHs/rGO hybrids, with the potential to enhance flame retardancy and smoke suppression properties across a broad spectrum of polymer materials.

摘要

在本研究中,我们探索了层状双氢氧化物(LDHs)与还原氧化石墨烯(rGO)的合理整合,以创建一种具有分级纳米/微阵列结构的CuMgAl-LDH/rGO杂化物,旨在提高聚合物纳米复合材料的阻燃性和抑烟性能。结果表明,G-CuMgAl/聚氯乙烯(PVC)复合材料的极限氧指数(LOI)值达到35.8%,相比原始PVC(29.4%)提高了6.4%,并达到了UL-94 V-0等级。此外,与原始PVC相比,G-CuMgAl/PVC复合材料的峰值热释放速率(PHRR)显著降低了40.2%;总热释放速率(THR)降低了24.3%;最大平均热释放速率(MARHE)降低了41.6%;峰值产烟量(PSPR)降低了37.8%;总产烟量(TSP)降低了31.3%;平均有效燃烧热(av-EHC)降低了15.2%。阻燃性增强和产烟量降低主要归因于高度分散的成分与纳米/微结构之间的多种协同相互作用,这些相互作用有效地阻碍了热、质量和氧气从各个方向的传递,同时通过在凝聚相中形成曲折路径来防止下层基体的进一步燃烧。此外,本研究为结构化LDHs/rGO杂化物的设计和合成提供了新的视角,具有在广泛的聚合物材料中提高阻燃性和抑烟性能的潜力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验