Zhang Zengqi, Li Gang, Du Xiaofan, Huang Lang, Kang Guohong, Zhang Jianjun, Cui Zili, Liu Tao, Ni Ling, Jin Yongcheng, Cui Guanglei
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China.
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
Adv Sci (Weinh). 2024 Dec;11(48):e2409628. doi: 10.1002/advs.202409628. Epub 2024 Oct 29.
Safety concerns and uncontrollable dendrite growths have severely impeded the advancement of lithium-metal batteries. Herein, a safe deep-eutectic-polymer electrolyte with built-in thermal shutdown capability is proposed by utilizing hydrophobic association of methylcellulose within a novel deep-eutectic-solvent. Specifically, at elevated temperatures, methylcellulose chains aggregate to form dense polymer networks due to hydrophobic association and break the solvation structure equilibrium inside the deep-eutectic system through encapsulating Li in polymer matrix, leading to quick solidification of the electrolyte. The solidified electrolyte obstructs Li transports and terminates electrochemical processes, protecting LMBs from unstoppable exothermic chain reactions. The accelerating rate calorimeter tests of 1 Ah pouch cells demonstrate that the as-prepared electrolyte significantly improves the onset self-heating temperature from 73 °C for conventional electrolytes to 172 °C and prolongs the thermal runaway waiting time more than 20 hours. More impressively, benefiting from its favorable electrochemical performance, this polymer electrolyte enables LiNiMnCoO||Li batteries to retain 92% capacity over 200 cycles and LiFePO||Li batteries to maintain 90% capacity after 500 cycles. This research paves a promising avenue for enhancing both the safety and electrochemical performance of high-energy-density LMBs.
安全问题和无法控制的枝晶生长严重阻碍了锂金属电池的发展。在此,通过利用甲基纤维素在新型低共熔溶剂中的疏水缔合作用,提出了一种具有内置热关闭功能的安全低共熔聚合物电解质。具体而言,在高温下,甲基纤维素链由于疏水缔合作用而聚集形成致密的聚合物网络,并通过将锂封装在聚合物基质中打破低共熔体系内部的溶剂化结构平衡,导致电解质快速固化。固化后的电解质阻碍锂传输并终止电化学过程,保护锂金属电池免受无法阻止的放热链反应的影响。对1 Ah软包电池进行的加速量热计测试表明,所制备的电解质将起始自热温度从传统电解质的73℃显著提高到172℃,并将热失控等待时间延长了20多个小时。更令人印象深刻的是,受益于其良好的电化学性能,这种聚合物电解质使LiNiMnCoO||Li电池在200次循环后仍能保持92%的容量,LiFePO||Li电池在500次循环后仍能保持90%的容量。这项研究为提高高能量密度锂金属电池的安全性和电化学性能开辟了一条有前景的途径。