Ling Wei, Nie Chenxi, Wu Xiongwei, Zeng Xian-Xiang, Mo Funian, Ma Qiang, Lu Zhouguang, Luo Guangfu, Huang Yan
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China.
ACS Nano. 2024 Feb 13;18(6):5003-5016. doi: 10.1021/acsnano.3c11115. Epub 2024 Jan 31.
The cycling stability of a thin zinc anode under high zinc utilization has a critical impact on the overall energy density and practical lifetime of zinc ion batteries. In this study, an ion sieve protection layer (ZnSnF@Zn) was constructed on the surface of a zinc anode by chemical replacement. The ion sieve facilitated the transport and desolvation of zinc ions at the anode/electrolyte interface, reduced the zinc deposition overpotential, and inhibited side reactions. Under a 50% zinc utilization, the symmetrical battery with this protection layer maintained stable cycling for 250 h at 30 mA cm. Matched with high-load self-supported vanadium-based cathodes (18-20 mg cm), the coin battery with 50% zinc utilization possessed an energy density retention of 94.3% after 1000 cycles at 20 mA cm. Furthermore, the assembled pouch battery delivered a whole energy density of 61.3 Wh kg, surpassing the highest mass energy density among reported mild zinc batteries, and retained 76.7% of the energy density and 85.3% (0.53 Ah) of the capacity after 300 cycles.
在高锌利用率下,薄锌负极的循环稳定性对锌离子电池的整体能量密度和实际寿命有着至关重要的影响。在本研究中,通过化学置换在锌负极表面构建了一层离子筛保护层(ZnSnF@Zn)。该离子筛促进了锌离子在负极/电解质界面的传输和去溶剂化,降低了锌沉积过电位,并抑制了副反应。在锌利用率为50%的情况下,带有该保护层的对称电池在30 mA cm下保持稳定循环250小时。与高负载自支撑钒基正极(18 - 20 mg cm)匹配时,锌利用率为50%的硬币电池在20 mA cm下1000次循环后能量密度保持率为94.3%。此外,组装的软包电池全能量密度为61.3 Wh kg,超过了已报道的温和锌电池中的最高质量能量密度,并且在300次循环后保留了76.7%的能量密度和85.3%(0.53 Ah)的容量。