Suppr超能文献

基于机器学习的还原氧化石墨烯和金属氧化物纳米粒子的柔性、室温操作传感器阵列对有害气体的选择性识别。

Selective Identification of Hazardous Gases Using Flexible, Room-Temperature Operable Sensor Array Based on Reduced Graphene Oxide and Metal Oxide Nanoparticles via Machine Learning.

机构信息

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.

Research Center for Advanced Materials Technology (RCAMT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.

出版信息

ACS Sens. 2024 Nov 22;9(11):6071-6081. doi: 10.1021/acssensors.4c01936. Epub 2024 Oct 29.

Abstract

Selective detection and monitoring of hazardous gases with similar properties are highly desirable to ensure human safety. The development of flexible and room-temperature (RT) operable chemiresistive gas sensors provides an excellent opportunity to create wearable devices for detecting hazardous gases surrounding us. However, chemiresistive gas sensors typically suffer from poor selectivity and zero-cross selectivity toward similar types of gases. Herein, a flexible, RT operable chemiresistive gas sensors array is designed, featuring reduced graphene oxide (rGO) and rGO decorated with zinc oxide (ZnO), titanium dioxide (TiO), and tin dioxide (SnO) nanoparticles (NPs) on a flexible polyimide (PI) substrate. The sensor array consists of four different sensing layers capable of the selective identification of various hazardous gases such as NO, NO, and SO using machine learning (ML). The gas sensor array exhibits a stable response even when mechanically deformed or exposed to high humidity (up to 60%). Each gas sensor, due to the different metal oxide NPs, shows unique responses in terms of sensitivity, responsiveness, response time, and recovery time to different gases. Consequently, the sensor array generates distinct response patterns that effectively differentiate between the target gases. By leveraging these distinctive recovery patterns and employing a data fusion approach in ML, specific concentrations of target gases can be distinguished. Using ML with fused array sensing data, the training and test accuracies achieved were 98.20 and 97.70%, respectively. This innovative combination of sensor arrays and ML offers significant potential for selective gas detection in environmental monitoring and personal safety applications.

摘要

选择检测和监测具有相似性质的有害气体对于确保人类安全非常重要。开发灵活和室温(RT)操作的化学电阻式气体传感器为创建用于检测我们周围危险气体的可穿戴设备提供了极好的机会。然而,化学电阻式气体传感器通常存在对相似类型气体的选择性和零交叉选择性差的问题。在此,设计了一种灵活的、室温操作的化学电阻式气体传感器阵列,该传感器阵列由柔性聚酰亚胺(PI)基板上的还原氧化石墨烯(rGO)和 rGO 修饰的氧化锌(ZnO)、二氧化钛(TiO)和二氧化锡(SnO)纳米颗粒(NPs)组成。传感器阵列由四个不同的传感层组成,能够使用机器学习(ML)选择性识别各种危险气体,如 NO、NO 和 SO。即使在机械变形或暴露在高湿度(高达 60%)的情况下,气体传感器阵列也能保持稳定的响应。由于不同的金属氧化物 NPs,每个气体传感器在对不同气体的灵敏度、响应性、响应时间和恢复时间方面都表现出独特的响应。因此,传感器阵列产生了独特的响应模式,可以有效地区分目标气体。通过利用这些独特的恢复模式并在 ML 中采用数据融合方法,可以区分目标气体的特定浓度。使用融合了阵列传感数据的 ML,训练和测试准确率分别达到了 98.20%和 97.70%。这种传感器阵列和 ML 的创新组合为环境监测和个人安全应用中的选择性气体检测提供了巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验