Zhan Zhenhai, Luo Yingxin, Yeh Hsien-Chi, Li Hongyin, Chen Weilu, Ren Chongzhi, Zeng Bingcheng
MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China.
Rev Sci Instrum. 2024 Oct 1;95(10). doi: 10.1063/5.0224636.
We report the development of a space-compatible packaging system for an integrated monolithic ultra-stable optical reference toward China's next-generation geodesy mission with low orbit satellite-to-satellite tracking. Building on our previous work, we optimized the mounting structure and thermal insulation mechanism using the finite element method. The comprehensive simulation results demonstrated the robustness of the entire packaging system with enough margins to withstand severe launch loads and maintain an ultra-high geometric cavity length stability. A long-term prediction of the vacuum maintenance around the cavity during in-orbit operation was conducted. An engineering prototype, within which an integrated monolithic optical reference has been mounted, was built based on our optimized design, and it has successfully passed typical aerospace environmental tests, including sinusoidal vibration (∼10 g, 10-100 Hz), random vibration (∼0.045 g2/Hz, 10-2000 Hz), and thermal cycling (0-45, 3 °C/min, lasting for 90 h). The experimental thermal time constant of the prototype exceeded 9.5 × 104 s, enabling a temperature stability of 1.1 × 10-6 K/Hz1/2 at 10 mHz on the optical cavity, with external active temperature control. The design is also suitable and useful for laboratory and terrestrial applications.
我们报告了一种用于集成单片超稳定光学参考的空间兼容封装系统的开发,该系统用于中国下一代大地测量任务中的低轨道卫星对卫星跟踪。基于我们之前的工作,我们使用有限元方法优化了安装结构和隔热机制。综合模拟结果表明,整个封装系统具有很强的鲁棒性,有足够的余量来承受严重的发射载荷,并保持超高的几何腔长稳定性。我们对在轨运行期间腔周围的真空维持情况进行了长期预测。基于我们的优化设计制造了一个工程原型,其中安装了一个集成单片光学参考,并且它已成功通过典型的航天环境测试,包括正弦振动(约10 g,10 - 100 Hz)、随机振动(约0.045 g2/Hz,10 - 2000 Hz)和热循环(0 - 45,3 °C/min,持续90 h)。该原型的实验热时间常数超过9.5×104 s,在外部有源温度控制下,在光学腔上10 mHz处实现了1.1×10-6 K/Hz1/2的温度稳定性。该设计对于实验室和地面应用也同样适用且有用。