Suppr超能文献

用于在单细胞RNA测序中同时消除批次效应和注释细胞类型的判别域适应网络

Discriminative Domain Adaption Network for Simultaneously Removing Batch Effects and Annotating Cell Types in Single-Cell RNA-Seq.

作者信息

Zhu Qi, Li Aizhen, Zhang Zheng, Zheng Chuhang, Zhao Junyong, Liu Jin-Xing, Zhang Daoqiang, Shao Wei

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2543-2555. doi: 10.1109/TCBB.2024.3487574. Epub 2024 Dec 10.

Abstract

Machine learning techniques have become increasingly important in analyzing single-cell RNA and identifying cell types, providing valuable insights into cellular development and disease mechanisms. However, the presence of batch effects poses major challenges in scRNA-seq analysis due to data distribution variation across batches. Although several batch effect mitigation algorithms have been proposed, most of them focus only on the correlation of local structure embeddings, ignoring global distribution matching and discriminative feature representation in batch correction. In this paper, we proposed the discriminative domain adaption network (D2AN) for joint batch effects correction and type annotation with single-cell RNA-seq. Specifically, we first captured the global low-dimensional embeddings of samples from the source and target domains by adversarial domain adaption strategy. Second, a contrastive loss is developed to preliminarily align the source domain samples. Moreover, the semantic alignment of class centroids in the source and target domains is achieved for further local alignment. Finally, a self-paced learning mechanism based on inter-domain loss is adopted to gradually select samples with high similarity to the target domain for training, which is used to improve the robustness of the model. Experimental results demonstrated that the proposed method on multiple real datasets outperforms several state-of-the-art methods.

摘要

机器学习技术在分析单细胞RNA和识别细胞类型方面变得越来越重要,为细胞发育和疾病机制提供了有价值的见解。然而,由于批次间数据分布的差异,批次效应的存在给单细胞RNA测序(scRNA-seq)分析带来了重大挑战。尽管已经提出了几种减轻批次效应的算法,但大多数算法只关注局部结构嵌入的相关性,而忽略了批次校正中的全局分布匹配和判别特征表示。在本文中,我们提出了用于单细胞RNA测序联合批次效应校正和类型注释的判别域自适应网络(D2AN)。具体来说,我们首先通过对抗域自适应策略捕获源域和目标域样本的全局低维嵌入。其次,开发了一种对比损失来初步对齐源域样本。此外,实现源域和目标域中类质心的语义对齐以进行进一步的局部对齐。最后,采用基于域间损失的自步学习机制,逐步选择与目标域相似度高的样本进行训练,以提高模型的鲁棒性。实验结果表明,该方法在多个真实数据集上优于几种现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验