Suppr超能文献

用于单细胞RNA测序数据的具有结构分组的可微图聚类

Differentiable graph clustering with structural grouping for single-cell RNA-seq data.

作者信息

Yan Xiaoqiang, Du Shike, Zou Quan, Tian Zhen

机构信息

School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China.

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.

出版信息

Bioinformatics. 2025 Jul 1;41(7). doi: 10.1093/bioinformatics/btaf347.

Abstract

MOTIVATION

Clustering cells into subpopulations is one of the most crucial tasks in single-cell RNA sequencing (scRNA-seq) data analysis, which provides support for biological research at cellular level. With the development of graph neural networks, deep graph clustering approaches have achieved excellent performance by modeling the topological relationships between cells. However, existing approaches rely on cell node and its neighbors to obtain the cell feature representation, which ignore the graph cluster structure hidden in scRNA-seq data. Besides, how to bridge the heterogeneous gap between cell node feature and its structural information remains a highly challenging problem.

RESULTS

Here, we propose a novel differentiable graph clustering with structural grouping (DGCSG) for scRNA-seq data, which incorporates graph cluster information into deep graph clustering model by designing a differentiable clustering mechanism to learn clustering-friendly representation. Firstly, an interactive module is devised to dynamically transfer node representations learned by autoencoder (AE) to graph attention autoencoder (GATE) in layer-by-layer manner. Then, to characterize graph cluster information, a differentiable clustering mechanism is proposed to transform K-way normalized cuts from a discrete optimization problem into differentiable learning objective through spectral relaxation, which jointly optimizes the GATE by allocating more attention scores to nodes in the same graph cluster. Finally, a decoupled self-supervised optimization is proposed, which guides the representation learning of AE and GATE in the interactive module. Extensive evaluations on 14 scRNA-seq benchmarks verify the superiority of DGCSG compared with state-of-the-art baselines.

AVAILABILITY AND IMPLEMENTATION

The code associated with this work is available on GitHub (https://github.com/Xiaoqiang-Yan/DGCSG).

摘要

动机

将细胞聚类成亚群是单细胞RNA测序(scRNA-seq)数据分析中最关键的任务之一,为细胞水平的生物学研究提供支持。随着图神经网络的发展,深度图聚类方法通过对细胞之间的拓扑关系进行建模取得了优异的性能。然而,现有方法依赖于细胞节点及其邻居来获得细胞特征表示,忽略了scRNA-seq数据中隐藏的图聚类结构。此外,如何弥合细胞节点特征与其结构信息之间的异构差距仍然是一个极具挑战性的问题。

结果

在此,我们提出了一种用于scRNA-seq数据的新型可微图聚类与结构分组(DGCSG)方法,通过设计一种可微聚类机制来学习有利于聚类的表示,将图聚类信息纳入深度图聚类模型。首先,设计了一个交互式模块,以逐层方式将自动编码器(AE)学习到的节点表示动态转移到图注意力自动编码器(GATE)。然后,为了表征图聚类信息,提出了一种可微聚类机制,通过谱松弛将K路归一化割从离散优化问题转化为可微学习目标,通过为同一图聚类中的节点分配更多注意力分数来联合优化GATE。最后,提出了一种解耦的自监督优化方法,指导交互式模块中AE和GATE的表示学习。在14个scRNA-seq基准上的广泛评估验证了DGCSG相对于现有最先进基线的优越性。

可用性和实现

与这项工作相关的代码可在GitHub上获取(https://github.com/Xiaoqiang-Yan/DGCSG)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d1/12212642/340f50010465/btaf347f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验