缺乏结果通过 Notch 信号转导的功能障碍导致神经发生缺陷和异常行为。

Deficiency of results in neurogenesis defects and abnormal behaviors via dysfunction of the Notch signaling.

机构信息

Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2404173121. doi: 10.1073/pnas.2404173121. Epub 2024 Oct 29.

Abstract

The molecular mechanisms underlying the neurodevelopmental disorders (NDDs) caused by variants remain poorly understood. In this study, we validated that de novo variants are enriched in female developmental delay (DD) patients and mainly affect the evolutionarily conserved amino acids based on a meta-analysis of 46,612 NDD trios. We generated a deficient zebrafish allele, which exhibited reduced survival rate, DD, microcephaly, adaptation defects, anxiolytic behaviors, social interaction deficits, and impaired spatial recognitive memory. As revealed by single-nucleus RNA sequencing and biological validations, deficiency leads to reduced neural stem cell pool, decreased total neuron number, and imbalanced differentiation of excitatory and inhibitory neurons, which are responsible for the behavioral defects. Indeed, the supplementation of L-glutamate or glutamate receptor agonist ly404039 could partly rescue the adaptation and social deficits. Mechanistically, we reveal that the deficiency attenuates the stability of the mRNA, which in turn causes downregulation of Notch signaling and defects in neurogenesis. Our study sheds light on the molecular pathology underlying the abnormal neurodevelopment and behavior of NDD patients with mutations, as well as providing potential therapeutic targets for the precision treatment.

摘要

变异引起的神经发育障碍(NDD)的分子机制仍知之甚少。在这项研究中,我们通过对 46612 个 NDD 三体型的荟萃分析,验证了新生变异在女性发育迟缓(DD)患者中富集,主要影响进化保守的氨基酸。我们生成了一个 缺失的斑马鱼等位基因,该基因表现出存活率降低、DD、小头畸形、适应缺陷、焦虑样行为、社交互动缺陷和空间识别记忆受损。通过单细胞 RNA 测序和生物学验证,我们揭示了 缺失导致神经干细胞池减少、总神经元数量减少以及兴奋性和抑制性神经元分化失衡,这是导致行为缺陷的原因。事实上,L-谷氨酸或谷氨酸受体激动剂 ly404039 的补充可以部分挽救适应和社交缺陷。在机制上,我们揭示了 缺失削弱了 mRNA 的稳定性,进而导致 Notch 信号通路下调和神经发生缺陷。我们的研究揭示了携带 突变的 NDD 患者异常神经发育和行为的分子病理学,并为精准治疗提供了潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc21/11551356/a311f58dc5ae/pnas.2404173121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索