Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Kristu Jayanti College, Autonomous, Bengaluru, 560077, India.
Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India.
Biochem Biophys Res Commun. 2024 Dec 3;736:150896. doi: 10.1016/j.bbrc.2024.150896. Epub 2024 Oct 24.
Aminocarb (AMC), a carbamate pesticide, due to its prevalent usage exhibits increased accumulation in the environment affecting both insects and humans. It enters the human body via food grains and be transported through bloodstream. AMC's chemical structure, containing specific molecular frameworks and functional groups, enables it to bind with proteins like albumin and hemoglobin. Given that molecules with similar architecture are known to bind with hemoglobin, we aimed to explore Aminocarb's binding capability and the potential mechanism or mode of its interaction with hemoglobin. Hb being a tetramer with a profound interface between amino acid chains offers multiple binding sites. It is therefore important to investigate the structural aspects of binding of AMC by employing various spectroscopic and in-silico methods. The surface of the α1 chain near the α1β2 interface emerges as the preferred binding site for AMC, primarily due to its conformational restrictions. In its bound state, AMC tends to maintain a relaxed conformation, closely resembling its globally optimized geometry, and resides in close proximity to the α1 chain via multiple hydrophobic contacts and water bridge as observed in molecular dynamics (MD) simulations. Fluorescence quenching experiments showed moderate binding strength (7.7 × 10⁴ L M⁻ at 288 K, 7.8 × 10⁴ L M⁻ at 298 K, 7.9 × 10⁴ L M⁻ at 308 K) and spontaneous binding, driven by hydrophobic and van der Waals interactions, as indicated by enthalpy (0.80-0.91 kJ mol⁻), entropy (0.0970-0.0974 kJ mol⁻), and Gibbs free energy (-27.13 to - 29.08 kJ mol⁻). Circular dichroism experiments reveal no major structural changes in Hb. Quantum chemical calculations and MD simulations reveal conformation-dependent energy differences, enhancing our understanding of AMC's binding mechanism to Hb.
氨基甲酸酯类农药氨甲萘(AMC)由于其广泛使用而在环境中不断积累,对昆虫和人类都有影响。它通过食物进入人体,并随血液流动。AMC 的化学结构包含特定的分子框架和功能基团,使其能够与白蛋白和血红蛋白等蛋白质结合。鉴于具有相似结构的分子已知与血红蛋白结合,我们旨在探索氨甲萘的结合能力及其与血红蛋白相互作用的潜在机制或模式。血红蛋白(Hb)是一个由四个亚基组成的蛋白质,其氨基酸链之间的界面很深,提供了多个结合位点。因此,采用各种光谱和计算方法研究 AMC 与 Hb 结合的结构方面非常重要。在α1β2 界面附近的α1 链表面是氨甲萘的首选结合位点,主要是因为其构象受限。在结合状态下,氨甲萘倾向于保持松弛的构象,与全局优化的几何形状非常相似,并通过分子动力学(MD)模拟中观察到的多个疏水接触和水桥与α1 链紧密相邻。荧光猝灭实验表明,结合强度适中(288 K 时为 7.7×10⁴ L M⁻¹,298 K 时为 7.8×10⁴ L M⁻¹,308 K 时为 7.9×10⁴ L M⁻¹),由疏水和范德华相互作用驱动,是自发的,焓(0.80-0.91 kJ mol⁻¹)、熵(0.0970-0.0974 kJ mol⁻¹)和吉布斯自由能(-27.13 至-29.08 kJ mol⁻¹)。圆二色性实验表明 Hb 没有发生重大结构变化。量子化学计算和 MD 模拟揭示了构象依赖性的能量差异,增强了我们对氨甲萘与 Hb 结合机制的理解。