Suppr超能文献

从大规模家庭数据中估计的遗传易感性可提高对重度抑郁症的遗传预测、风险评分分析和基因定位。

Genetic liability estimated from large-scale family data improves genetic prediction, risk score profiling, and gene mapping for major depression.

机构信息

Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark.

Institute of Biological Psychiatry, Mental Health Center - Sct Hans, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark.

出版信息

Am J Hum Genet. 2024 Nov 7;111(11):2494-2509. doi: 10.1016/j.ajhg.2024.09.009. Epub 2024 Oct 28.

Abstract

Large biobank samples provide an opportunity to integrate broad phenotyping, familial records, and molecular genetics data to study complex traits and diseases. We introduce Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), a method for estimating disease liability from patterns of diagnoses in extended, age-censored genealogical records. We then apply the method to study a paradigmatic complex disorder, major depressive disorder (MDD), using the iPSYCH2015 case-cohort study of 30,949 MDD cases, 39,655 random population controls, and more than 2 million relatives. We show that combining PA-FGRS liabilities estimated from family records with molecular genotypes of probands improves three lines of inquiry. Incorporating PA-FGRS liabilities improves classification of MDD over and above polygenic scores, identifies robust genetic contributions to clinical heterogeneity in MDD associated with comorbidity, recurrence, and severity and can improve the power of genome-wide association studies. Our method is flexible and easy to use, and our study approaches are generalizable to other datasets and other complex traits and diseases.

摘要

大型生物库样本提供了一个机会,可以整合广泛的表型、家族记录和分子遗传学数据,以研究复杂的特征和疾病。我们介绍了 Pearson-Aitken 家族遗传风险评分(PA-FGRS),这是一种从扩展的、年龄校正的系谱记录中的诊断模式估计疾病易感性的方法。然后,我们使用 iPSYCH2015 病例 - 队列研究中的 30949 例 MDD 病例、39655 例随机人群对照和超过 200 万亲属,应用该方法研究了一个典型的复杂疾病,即重度抑郁症(MDD)。我们表明,将从家族记录中估计的 PA-FGRS 负债与先证者的分子基因型相结合,可以改善三种研究方法。将 PA-FGRS 负债纳入其中,可以提高 MDD 的分类,超过多基因评分,确定与共病、复发和严重程度相关的 MDD 临床异质性的稳健遗传贡献,并可以提高全基因组关联研究的功效。我们的方法灵活易用,我们的研究方法可以推广到其他数据集和其他复杂特征和疾病。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验