Cobuccio Leonardo, Sigurdsson Arnor I, Georgii Hellberg Kajsa-Lotta, Dybdahl Krebs Morten, Meisner Jonas, Werge Thomas, Benros Michael E, Schork Andrew J, Rasmussen Simon
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark.
medRxiv. 2025 May 5:2025.05.05.25326794. doi: 10.1101/2025.05.05.25326794.
Polygenic scores (PGSs) have emerged as promising tools for predicting complex traits from genetic data, however, their predictive performance for psychiatric disorders remains limited and the added value of deep learning (DL) over linear models is underexplored. In this study, we compared our DL model, Genome-Local-Net (GLN), with the linear model bigstatsr in predicting five psychiatric disorders-ADHD, ASD, BIP, MDD, and SCZ-using individual-level genotype data. We further assessed whether combining these (individual-based) PGSs with (GWAS-derived) PGSs and family genetic risk scores (FGRSs) could improve prediction additively or synergistically. While GLN and bigstatsr performed similarly in-sample, GLN showed better generalization on an out-of-sample replication set for ADHD, ASD, and MDD, with an average AUROC gain of 0.026. Integrating , , and family-based scores significantly improved ADHD prediction, though DL-based integration provided no consistent advantage over logistic models. These findings suggest that while DL may enhance generalizability for specific psychiatric traits, linear models remain competitive and effective for genetic risk prediction.
多基因评分(PGS)已成为从遗传数据预测复杂性状的有前景的工具,然而,它们对精神疾病的预测性能仍然有限,并且深度学习(DL)相对于线性模型的附加值尚未得到充分探索。在本研究中,我们将我们的深度学习模型基因组局部网络(GLN)与线性模型bigstatsr进行比较,使用个体水平的基因型数据预测五种精神疾病——注意力缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、双相情感障碍(BIP)、重度抑郁症(MDD)和精神分裂症(SCZ)。我们进一步评估了将这些(基于个体的)PGS与(全基因组关联研究衍生的)PGS和家族遗传风险评分(FGRS)相结合是否能相加或协同地改善预测。虽然GLN和bigstatsr在样本内表现相似,但GLN在ADHD、ASD和MDD的样本外复制集上表现出更好的泛化能力,平均受试者工作特征曲线下面积(AUROC)增益为0.026。整合个体、全基因组关联研究衍生的和基于家族的评分显著改善了ADHD预测,尽管基于深度学习的整合相对于逻辑模型没有提供一致的优势。这些发现表明,虽然深度学习可能增强对特定精神性状的泛化能力,但线性模型在遗传风险预测方面仍然具有竞争力且有效。