Suppr超能文献

蜂鸟在逃避机动飞行力学中的身体惯性耦合。

Inertial coupling of the hummingbird body in the flight mechanics of an escape manoeuvre.

机构信息

Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235-1592, USA.

Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.

出版信息

J R Soc Interface. 2024 Oct;21(219):20240391. doi: 10.1098/rsif.2024.0391. Epub 2024 Oct 30.

Abstract

When a hovering hummingbird performs a rapid escape manoeuvre in response to a perceived threat from the front side, its body may go through simultaneous pitch, yaw and roll rotations. In this study, we examined the inertial coupling of the three-axis body rotations and its effect on the flight mechanics of the manoeuvre using analyses of high-speed videos as well as high-fidelity computational modelling of the aerodynamics and inertial forces. We found that while a bird's pitch-up was occurring, inertial coupling between yaw and roll helped slow down and terminate the pitch, thus serving as a passive control mechanism for the manoeuvre. Furthermore, an inertial coupling between pitch-up and roll can help accelerate yaw before the roll-yaw coupling. Different from the aerodynamic mechanisms that aircraft and animal flyers typically rely on for flight control, we hypothesize that inertial coupling is a built-in mechanism in the flight mechanics of hummingbirds that helps them achieve superb aerial agility.

摘要

当一只悬停的蜂鸟为了躲避来自正面的感知威胁而迅速做出逃避动作时,它的身体可能会同时进行俯仰、偏航和滚转运动。在这项研究中,我们通过对高速视频的分析以及对空气动力学和惯性力的高保真计算建模,研究了三轴身体旋转的惯性耦合及其对该动作的飞行力学的影响。我们发现,当鸟类进行俯仰时,偏航和滚转之间的惯性耦合有助于减缓并终止俯仰,因此成为该动作的被动控制机制。此外,俯仰和滚转之间的惯性耦合可以帮助在滚转-偏航耦合之前加速偏航。与飞机和动物飞行员通常依赖的用于飞行控制的空气动力学机制不同,我们假设惯性耦合是蜂鸟飞行力学中的内置机制,有助于它们实现卓越的空中敏捷性。

相似文献

1
Inertial coupling of the hummingbird body in the flight mechanics of an escape manoeuvre.
J R Soc Interface. 2024 Oct;21(219):20240391. doi: 10.1098/rsif.2024.0391. Epub 2024 Oct 30.
2
3
Hummingbirds use wing inertial effects to improve manoeuvrability.
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
4
Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.
J Exp Biol. 2016 Nov 15;219(Pt 22):3518-3531. doi: 10.1242/jeb.137539. Epub 2016 Sep 5.
6
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
10
Early warning systems and rapid response systems for the prevention of patient deterioration on acute adult hospital wards.
Cochrane Database Syst Rev. 2021 Nov 22;11(11):CD005529. doi: 10.1002/14651858.CD005529.pub3.

本文引用的文献

1
Quantitative functional imaging of the pigeon brain: implications for the evolution of avian powered flight.
Proc Biol Sci. 2024 Jan 31;291(2015):20232172. doi: 10.1098/rspb.2023.2172.
2
Hummingbirds use wing inertial effects to improve manoeuvrability.
J R Soc Interface. 2023 Oct;20(207):20230229. doi: 10.1098/rsif.2023.0229. Epub 2023 Oct 4.
3
Role of wing inertia in maneuvering bat flights.
Bioinspir Biomim. 2022 Nov 21;18(1). doi: 10.1088/1748-3190/ac9fb1.
4
Birds can transition between stable and unstable states via wing morphing.
Nature. 2022 Mar;603(7902):648-653. doi: 10.1038/s41586-022-04477-8. Epub 2022 Mar 9.
5
Quantifying avian inertial properties using calibrated computed tomography.
J Exp Biol. 2022 Jan 1;225(1). doi: 10.1242/jeb.242280. Epub 2022 Jan 4.
6
A quantitative evaluation of physical and digital approaches to centre of mass estimation.
J Anat. 2017 Nov;231(5):758-775. doi: 10.1111/joa.12667. Epub 2017 Aug 15.
8
Flight mechanics and control of escape manoeuvres in hummingbirds. I. Flight kinematics.
J Exp Biol. 2016 Nov 15;219(Pt 22):3518-3531. doi: 10.1242/jeb.137539. Epub 2016 Sep 5.
10
Three-dimensional simulation for fast forward flight of a calliope hummingbird.
R Soc Open Sci. 2016 Jun 8;3(6):160230. doi: 10.1098/rsos.160230. eCollection 2016 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验