School of Life Sciences, University of Warwick, Coventry, UK.
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.
J R Soc Interface. 2024 Oct;21(219):20240574. doi: 10.1098/rsif.2024.0574. Epub 2024 Oct 30.
Many species of soil fungi grow in the form of branched networks that enable long-range communication and mass flow of nutrient. These networks play important roles in the soil ecosystem as a major decomposer of organic materials. While there have been investigations on the branching of the fungal networks, their long-term growth dynamics in space and time is still not very well understood. In this study, we monitor the spatio-temporal growth dynamics of the plant-promoting filamentous fungus for several days in a controlled environment within a microfluidic chamber. We find that cells display synchronized growth oscillations with the onset of sporulation and at a period of 3 h. Quantifying this experimental synchronization of oscillatory dynamics, we show that the synchronization can be recapitulated by the nearest neighbour Kuramoto model with a millimetre-scale cell-cell coupling. The microfluidic set-up presented in this work may aid the future characterization of the molecular mechanisms of the cell-cell communication, which could lead to biophysical approaches for controlling fungi growth and reproductive sporulation in soil and plant health management.
许多土壤真菌以分支网络的形式生长,这种形式使它们能够进行长距离的通讯和养分的大规模流动。这些网络在土壤生态系统中作为有机物质的主要分解者发挥着重要作用。虽然已经有研究调查了真菌网络的分支,但它们在空间和时间上的长期生长动态还不是很清楚。在这项研究中,我们在微流控室内的受控环境中监测了具有促进植物生长作用的丝状真菌的时空生长动态,持续了几天。我们发现,细胞在孢子形成开始时表现出与有节奏的生长振荡,其周期为 3 小时。通过量化这种振荡动态的实验同步,我们表明,最近邻 Kuramoto 模型可以再现毫米级细胞-细胞耦合的同步。本工作中提出的微流控装置可以帮助未来对细胞-细胞通讯的分子机制进行特征描述,这可能会导致用于控制土壤中真菌生长和有性生殖孢子形成的生物物理方法,以及植物健康管理。